
Adaptive Cloud Publish-Subscribe Services
for Latency-Constrained Applications

Julien Gascon-Samson

Doctor of Philosophy

School of Computer Science
McGill University

Montreal, Quebec, Canada

October 2016

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Doctor of Philosophy

c©Julien Gascon-Samson, 2016



Abstract

With the advent of very high-speed connections, modern web applications, smartphones and mobile
applications, large-scale internet services have become ubiquitous and are part of our daily lives. Nowa-
days, in many of these services, such as social media, not only do users consume the contents, but they
also contribute to the production of the contents. In addition, users want to be dynamically informed
of changes to the contents in which they are interested in, notably by means of push notifications.

The publish/subscribe model is an efficient paradigm that can be leveraged in these contexts, as
it provides a nice abstraction that allows for logically and efficiently decoupling content producers
(publishers) from content consumers (subscribers). Publish/subscribe is typically provided as a service,
in which subscribers register interest in (subscribe to) contents that they want to receive. Then, as
publishers generate and submit contents in the form of publications to the service, the latter determines
to which subscribers each publication should be sent to, and forwards each publication accordingly to
the relevant subscribers. While multiple variants of the publish/subscribe paradigm have been described
in the literature, this thesis is centered around topic-based publish/subscribe, which enjoys widespread
usage in large-scale commercial systems.

Supporting large-scale topic-based publish/subscribe applications brings interesting research chal-
lenges, notably regarding the scalability and load balancing aspects, as some applications built on these
systems can generate high message volumes. In addition, some specific applications impose additional
constraints, such as multiplayer online games (MOG), in which publication delivery latencies must be
kept below a given threshold, which can be particularly challenging when clients are distributed around
the world. The cloud can be leveraged in these contexts, as a publish/subscribe service deployed in the
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cloud can benefit from the large pool of resources that the cloud can provide in several geographical
regions.

This thesis proposes a set of contributions in the general area of scaling cloud-based topic-based
publish/subscribe systems. Our first contribution, Dynamoth, provides a scalable topic-based publish/-
subscribe service that is tailored for latency-constrained applications. It provides a hierarchical scala-
bility and load balancing model that exploits the intrinsic characteristics of the topic-based publish/-
subscribe paradigm. In addition, Dynamoth also provides availability and fault tolerance in the event
of server failures and provides several levels of reliability and ordering guarantees. Our second contri-
bution, MultiPub, provides a global-scale topic-based pub/sub service tailored for the needs of applica-
tions with many clients around the world, and having strict latency constraints. As such, it allows one to
impose latency constraints. MultiPub then continuously makes sure that these constraints are satisfied
(if possible), by generating optimal configurations of cloud deployments spanning across several of
the available regions. As cloud usage incurs bandwidth-related costs, and that different cloud regions
exhibit different costs, MultiPub also attempts to reduce such costs by selecting the most cost-efficient
configuration that respects latency constraints. On the other end, our third contribution, DynFilter, pro-
poses a game-oriented topic-based publish/subscribe service that aims at limiting bandwidth usage in
multiplayer and massively multiplayer online games. As DynFilter is game-specific, it exploits the
conceptual spatial model of such games in order to inhibit the dissemination of publications that are of
a lesser importance in a game setting, in a dynamic way, in order to achieve target bandwidth savings.

All of our experiments are run in the context of multiplayer online games, as the topic-based pub-
lish/subscribe paradigm fits well into the architectural model of such games. In addition, they are a good
example of highly distributed, latency-constrained systems. As running experiments in the cloud is a
challenging task, this thesis provides, as an additional contribution, a set of tools that were developed to
assist in running large-scale, highly-distributed cloud-based experiments. Among these contributions
is a full, reusable implementation of our Dynamoth platform, built according to software engineering
principles.

In summary, we believe that this thesis provides new and innovative contributions in the cloud-
based scalability of topic-based publish/subscribe.
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Abrégé

Avec l’avènement des connexions haute-vitesse, des applications web modernes, des téléphones intel-
ligents et des applications mobiles, les services internet à large échelle sont maintenant omniprésents et
font désormais partie de notre quotidien. De nos jours, au sein de plusieurs de ces services tels que les
médias sociaux, les utilisateurs ne sont plus de simples consommateurs de contenu, mais participent
également à la production du contenu. De plus, les utilisateurs désirent être informés dynamiquement
des changements au contenu qui les intéresse, notamment par le biais de notifications de type push.

Le modèle de publication/souscription représente un paradigme efficace qui peut être exploité dans
ces contextes, puisqu’il fournit une abstraction qui permet de découpler de façon logique et efficace
les producteurs de contenu (émetteurs) des consommateurs de contenu (souscripteurs). Le modèle de
publication/souscription est typiquement fourni en tant que service, au sein duquel les souscripteurs
expriment leur intérêt envers le (souscrivent au) contenu qu’ils souhaitent recevoir. Puis, au fur et à
mesure que les émetteurs soumettent leur contenu sous la forme de publications au service de publi-
cation/souscription, ce dernier détermine à quels souscripteurs les différentes publications doivent être
transmises, et procède au transfert des publications vers les bons souscripteurs. Plusieurs variantes du
paradigme de publication/souscription ont été décrites dans la littérature. Cette thèse s’articule autour
de l’une de ces variantes, le modèle de publication/souscription orienté-sujet, qui jouit d’une utilisation
répandue dans les systèmes commerciaux à large échelle.

La prise en charge des applications à large échelle basées sur le modèle de publication/souscrip-
tion orienté-sujet apporte des défis de recherche intéressants, notamment en ce qui a trait aux aspects
d’évolutivité et de balancement de charge, puisque certaines applications construites sur ce modèle
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peuvent générer un volume important de messages. De plus, certaines applications spécifiques im-
posent des contraintes additionnelles, telles que les jeux massivement multijoueurs en ligne (MOG),
dans lesquels la dissémination des publications doit s’effectuer dans un délai strict, ce qui peut con-
stituer un défi important surtout lorsque les clients sont géographiquement dispersés à travers la planète.
L’utilisation du nuage informatique peut s’avérer bénéfique dans ces contextes, puisque le déploiement
du service de publication/souscription dans cet environnement peut permettre au service d’avoir accès
au large éventail de ressources que le nuage peut fournir dans plusieurs régions géographiques.

Cette thèse propose un ensemble de contributions dans le domaine général de l’évolutivité des
systèmes de publication/souscription orientés-sujet dans le nuage. Notre première contribution, Dy-
namoth, propose un service évolutif de publication-souscription orienté–sujet qui est optimisé pour les
besoins des applications contraintes en latence. Dynamoth propose un modèle hiérarchique d’évolutivi-
té et balancement de charge qui exploite les caractéristiques intrinsèques du paradigme de publication/-
souscription orienté-sujet. De plus, Dynamoth propose des propriétés de disponibilité et de tolérance
aux pannes en cas d’échec de serveurs et propose différents niveaux de fiabilité et de garanties d’or-
donnancement. Notre seconde contribution, MultiPub, propose un service de publication/souscription
orienté-sujet à échelle globale conçu pour les besoins des applications avec des utilisateurs répartis à
travers le monde, et ayant des contraintes strictes en latence. Dans cette optique, MultiPub permet aux
applications d’imposer des différentes contraintes de latence. MultiPub s’assure alors sur une base con-
tinue que les contraintes définies sont respectées (si possible), en générant des configurations optimales
de déploiements tirant parti d’un ensemble de régions infonuagiques disponibles. Puisque l’utilisation
du nuage génère des coûts reliés à l’utilisation de la bande passante, et que ces coûts diffèrent au sein
des différentes régions infonuagiques, MultiPub vise également à réduire les coûts en sélectionnant
la configuration la plus économique qui respecte les contraintes en latence imposées. Dans un autre
ordre d’idées, notre troisième contribution, DynFilter, propose un service de publication/souscription
orienté-sujet conçu spécifiquement pour les besoins des jeux multijoueurs en ligne. DynFilter vise à
limiter l’utilisation de la bande passante au sein de tels jeux. De par sa nature, DynFilter exploite le
modèle conceptuel spatial propre aux jeux multijoueurs afin de limiter la dissémination des publica-
tions de moindre importance dans un tel contexte, de façon dynamique, afin d’atteindre des économies
de bande passante ciblées.

L’ensemble de nos expérimentations ont été menées dans le contexte de jeux multijoueurs, puisque
le paradigme de publication/souscription orienté-sujet s’harmonise bien avec le modèle architectural
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de ces jeux. De plus, les jeux en ligne constituent un bon exemple de systèmes hautement distribués
et contraints en latence. L’exécution d’expérimentations dans le nuage amène certes son lot de défis.
Pour cette raison, cette thèse propose, en tant que contribution additionnelle, un ensemble d’outils qui
ont été développés pour aider à l’exécution d’expérimentations à large échelle et hautement distribuées
dans le nuage. L’une de ces contributions est une implémentation complète et réutilisable de notre
plate-forme Dynamoth, qui a été construite selon des principles d’ingénierie logicielle.

En résumé, nous croyons que cette thèse amène des contributions nouvelles et innovatrices dans
le domaine de l’évolutivité des systèmes de publication/souscription orientés-sujet et déployés dans le
nuage.
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Contributions

This section summarizes the main contributions that are part of this thesis. Note that our contributions
are described in more details at section 1.2. The complete list of our publications can be found at the
end of this thesis, including some contributions that are not part of this thesis.

Dynamoth [53, 55] Our Dynamoth contribution proposes a scalable and fault tolerant topic-based
publish/subscribe service for cloud-based environments. Initial aspects of our work were first published
in NetGames 2013 as a short paper / poster [55], and the core of our work was then published as a paper
in ICDCS 2015 [53] (acceptance ratio of 12.8%). For these two contributions, I worked on the initial
ideas and model, built the Dynamoth platform implementation, conducted the various experiments and
wrote the paper, with the guidance of my advisors Bettina Kemme and Jörg Kienzle, with whom I
had regular meetings and who collaborated towards reviewing the paper. A third year undergraduate
student, Franz-Philippe Garcia, collaborated on implementing specific features of our model within
our Dynamoth implementation, ran some experiments for the features he implemented and produced
a technical report [52]. Note that our current publications do not include the availability and fault
tolerance aspects. We are in the final stages of preparing a journal extension to Dynamoth that we plan
on submitting to IEEE TPDS at the end of the Fall 2016 term. The contents of chapter 3 of this thesis
is derived from our Dynamoth conference publication [53] and from our upcoming Dynamoth journal
publication.

MultiPub Our MultiPub contribution proposes a latency and cost-aware topic-based publish/sub-
scribe service for global-scale applications. In the context of MultiPub, I worked on the initial ideas
and the model, and then I build two implementations of our system in order to run simulated and
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cloud experiments, in order to write a paper (which is not published yet). My advisors, Bettina Kemme
and Jörg Kienzle, once again provided me with their guidance, through regular meetings, as well as
their feedback and collaboration on reviewing the paper. We plan on submitting to ICDCS 2017 in
December 2016. The contents of chapter 4 is derived from our MultiPub paper to be submitted.

DynFilter Our MultiPub contribution proposes a game-oriented topic-based publish/subscribe ser-
vice. In the context of DynFilter, I worked on the initial ideas, implemented the model, ran the experi-
ments in the cloud and wrote the paper. My advisors also guided me throughout this project, once again
through regular meetings, as well as through the feedback that they provided me with regarding the
paper. Our results were published in NetGames 2013 [54]. The contents of chapter 5 is derived from
our NetGames publication.
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1
Introduction

Large-scale Internet services have become ubiquitous and are part of our daily lives. Nowadays, many
people make use of online services on a daily basis, and even several times per day. Popular online
services include emailing, social media, online news, gaming, online banking, streaming video con-
tents, among many others. In addition, with the advent of smartphones, more and more people are
connected at all times. Smartphones, combined with the ever-increasing popularity of social media,
brought an important revolution: not only do users access the contents, but the contents now come
to the users, through the form of push notifications and other similar mechanisms. Moreover, as we
observe in many different applications, users are not limited to being content consumers anymore, but
play an ever-increasing role in content production. This trend can be observed in many domains, such
as, social media, blogs, video hosting services, in which users define the contents and consume the
contents created by other users.

1.1 Motivation

Undoubtedly, supporting such large-scale, always-available and highly dynamic and distributed sys-
tems brings tremendous challenges, notably in regards to the software and hardware infrastructure
that is needed. In the field of software and systems engineering, paradigms play an important role.
Paradigms refer to abstracting certain facets of software systems into a set of well-known abstractions
that can then be reused across different applications or domains. One such paradigm is the publish/-
subscribe model, which allows for logical and efficient decoupling of content producers from content
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1.1 Motivation

subscribers. The publish/subscribe paradigm is very relevant in the context of large and Internet-scale
applications in which users produce and consume contents, as it captures well the relationship between
the different entities involved.

In an abstract form, publish/subscribe allows content consumers to express interest in and subscribe
to contents produced by content producers. For example, in a social media setting such as Facebook,
a user can post content to his/her wall. All interested users (friends in the Facebook terminology) can
then express interest in this content. In a mobile application setting, a user might subscribe to receive
weather alerts for his/her geographical region, published by weather service providers. One can quickly
find many other applications that can benefit in a similar fashion from a publish/subscribe approach.

In principle, publish/subscribe can be offered as a service, where the service provider accepts and
maintains subscription requests, and accepts publications and forwards them to relevant subscribers.
Thus, a publish/subscribe service maintains a registry of all subscriptions and, upon receiving publi-
cations to be transmitted, matches each of these publications against the set of active subscriptions.
Then, the service disseminates the publication to the set of interested subscribers. This thesis is cen-
tered around topic-based publish/subscribe, which is one particular flavor of publish/subscribe that
enjoys widespread use in commercial systems. In topic-based publish/subscribe, subscribers register
interest in topics. At the same time, publishers tag their publications with a topic. The publish/sub-
scribe service then sends a publication for a particular topic to the subscribers that expressed interest
in this topic. Note that beside topic-based publish/subscribe, some other flavors of publish/subscribe
do exist and are described in section 2.1.

Scaling Publish/Subscribe Systems Finding matching subscribers and disseminating publications
to subscribers incurs processing costs. Additionally, the dissemination process requires bandwidth. In
the context of topic-based publish/subscribe, outgoing bandwidth is often a bottleneck, as the matching
process is fairly simple while one single publication might need to be sent to many subscribers. Twitter
is a notable example of a large-scale system that follows a topic-based publish/subscribe paradigm. In
Twitter, over 7000 tweets (publications) are sent every second1 by different users (publishers). Each
tweet from a given user must be delivered by the service to all the followers (subscribers) of that user. In
addition, the top users have close to 100 million followers 2, which means that every publication sent

1http://www.internetlivestats.com/twitter-statistics/
2http://twittercounter.com/pages/100, retrieved on October 2nd, 2016
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1.2 Thesis Contributions

by these users must be delivered to close to 100 million subscribers. Evidently, one single machine
cannot process such a high volume of publications from a bandwidth perspective. Therefore, there is a
need to scale such systems beyond one single machine in order to offer large-scale publish/subscribe
services. One way to scale topic-based pub/sub systems, e.g., is to spread the set of active topics over
the available machines, so that a single machine is only in charge of a limited amount of subscriptions
and publications, and therefore has to disseminate only a subset of the overall publications. Different
schemes exist, and are described in the next chapter.

The cloud can be used to support the scaling of publish/subscribe systems, as it can provide scala-
bility by means of its virtually unlimited resources. However, important challenges lie in architecting
such systems for cloud environments, especially regarding the distribution of the load/bandwidth (sub-
scription, topics) among multiple machines, which is a major focus of this thesis.

Multiplayer Games: A Large-Scale Publish/Subscribe Application Multiplayer games represent
a multi-billion dollar industry nowadays, with many gamers interacting through different devices, e.g.,
personal computers, game consoles and mobile devices. Large-scale and massive multiplayer online
games exhibit a wide range of challenges of their own, including scalability challenges, as they are
highly distributed systems featuring several hundreds and thousands of players within a shared vir-
tual space. As several bodies of work demonstrated [70, 45, 25], the publish/subscribe paradigm can
adequately model interest relationships and the exchange of information between the various in-game
entities in the virtual world. Games also impose latency constraints on publish/subscribe systems, as in-
formation must be delivered quickly to players, in order to maintain the immersive experience that keep
players engaged. For these considerations, this thesis considers games as a publish/subscribe applica-
tion for our different experiments, as they provide several challenges and provide an intuitive model
for our large-scale tests. In addition, part of this thesis aim at proposing publish/subscribe systems that
are optimized for the needs of (large-scale) multiplayer games.

1.2 Thesis Contributions

This thesis makes three major research contributions in the general area of topic-based large-scale
publish/subscribe systems. More specifically, our contributions address several scalability challenges,
such as load balancing, latency optimization, cost minimization and bandwidth limitation. In addition,
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this thesis also brings an additional engineering-related contribution, in the form of a set of tools that we
developed to implement the models that we proposed and to assist in running large-scale experiments.

Dynamoth The Dynamoth system proposes a scalable and fault-tolerant topic-based publish/sub-
scribe platform for cloud-based environments. To the best of our knowledge, very few cloud-based
topic-based scalable publish/subscribe systems have been proposed in academia, and we think that
Dynamoth provides a novel, relevant contribution in this area. A notable feature of Dynamoth is that it
was designed with the needs of latency-constrained applications in mind, such as games, in which pub-
lications must be delivered as fast as possible. As such, it provides a flat architecture where publishers
and subscribers communicate directly with publish/subscribe servers in the cloud, and where publi-
cations are delivered as fast as possible without having to go through a series of servers. Dynamoth
proposes a hierarchical load balancer that adjusts the system configuration dynamically, including au-
tomatically adding/removing servers as needed. Dynamoth also provides a failure recovery mechanism
that guarantees continuous message delivery despite failures of one or more servers, while providing
several levels of guarantees regarding message delivery and ordering.

MultiPub The MultiPub system is an extension of Dynamoth and aims at minimizing costs and la-
tency in a global-scale cloud setting for applications with strict latency needs. While Dynamoth already
takes user-specified latency constraints into account, MultiPub can take advantage of cloud resources
located in several regions of the world. By exploiting the locality of the users of the publish/subscribe
system, MultiPub is able to split the load across the different available regions in an optimized man-
ner, in order to come up with configurations that are as cost-efficient as possible, while meeting target
latency constraints. In order to reach these goals, MultiPub offers a fine-grained load balancing model
that takes the intrinsic characteristics of the topic-based publish/subscribe paradigm into consideration.
To the best of our knowledge, MultiPub represents a novel contribution, as it is the first topic-based
publish/subscribe system that considers both monetary costs reduction and latency optimization, in a
global-scale cloud setting.

DynFilter DynFilter is a game-specific topic-based publish/subscribe system for the cloud. Consid-
ering the fact that games can consume large amounts of bandwidth, and that bandwidth incurs costs in
the cloud, DynFilter aims at limiting bandwidth usage within games in order to meet predefined quotas.
DynFilter’s contributions lie in proposing a topic-based publish/subscribe model that takes advantage
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of game semantics, and where the optimization criteria is bandwidth usage. As it was the case with
Dynamoth and MultiPub, DynFilter is offered as a service and provides a real-time load balancer that
adapts to the current load conditions monitored by the infrastructure.

Dynamoth and Software Tools In order to truly assert the relevance of our different contributions,
and to compare them against other approaches, we built a full implementation of our approaches. Thus,
we built the Dynamoth software platform, which allowed us to run our various large-scale experiments
on topic-based pub/sub systems, both in cloud environments and in cloud-like environments. Exper-
iments were run successfully with over 1200 pub/sub clients. The Dynamoth software platform was
carefully engineered to be modular, extensible and reusable among other characteristics. We plan to
release this platform as open source in a near future, so that other researchers can build upon it to
develop their own pub/sub scalability models, and to run large-scale experiments. Dynamoth was suc-
cessfully reused to implement the MultiPub and DynFilter models. In addition to Dynamoth, we also
built a simulator implementing the MultiPub model (simulation-based results were compared against
results obtained from our real implementation). We also developed a set of tools to assist in running
very large-scale experiments in the cloud (Distmoth).

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents some relevant background notions, as well as
relevant related work.

Chapter 3 presents our Dynamoth system and its main contributions in the area of load balancing,
scalability, availability and fault tolerance of topic-based publish/subscribe systems.

Chapter 4 presents our MultiPub system and its general contributions towards cost and latency
optimization in the context of such systems.

Chapter 5 presents DynFilter, our game-oriented topic-based pub/sub system that aims at restricting
bandwidth usage in game-specific pub/sub applications.

All chapters motivate and describe the problem in hand, describe main contributions, present our
concrete solution, describe its implementation and present a detailed performance evaluation that
shows the feasibility and relevance of our approaches.
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Chapter 6 presents the different software platforms and tools that we developed and that we provide
as an additional contribution to this thesis: the Dynamoth platform, the set of tools that we developed to
run our large-scale experiments (notably, Distmoth) and the implementation of our MultiPub simulator.

While our three chapters describing our research contributions (chapters 3, 4 and 5) contain their
own conclusions, chapter 7 provides our overall conclusions to this thesis and opens areas for future
work.
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2
Background and Related Work

This section presents the common concepts that are relevant to the understanding of this thesis, as well
the related work.

We introduce the publish/subscribe paradigm and the various languages of pub/sub in section 2.1.
In section 2.2, we describe the general architecture of publish/subscribe systems. We then discuss in
section 2.3 the different scalability approaches of publish/subscribe systems as well as the related work.
In section 2.4, the reliability and optimization aspects of publish/subscribe systems are covered. In sec-
tion 2.5, we describe some popular commercial and open-source large-scale publish/subscribe systems.
Finally, in section 2.6, we discuss multiplayer games as one important application of publish/subscribe
systems that brings several interesting challenges.

2.1 Publish/Subscribe Languages

The publish-subscribe (pub/sub) concept [31, 47, 48] is an extremely popular communication paradigm
that is used across a wide range of application domains because it provides efficient and elegant ways
to decouple content producers (publishers) from content consumers (subscribers). In a typical publish/-
subscribe system, subscribers subscribe to contents that they are interested in receiving, and publishers
publish messages (called publications) that are transmitted to relevant subscribers.

One of the fundamental challenges of publish/subscribe lies in matching publications to sub-
scribers; that is, resolving to which subscribers any given publication should be sent to. The typical
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modus operandi is for publishers to tag each publication with specific metadata, and to have subscribers
subscribe to specific subscription predicates. The matching process then involves determining, for each
publication issued by a given publisher and for each subscription registered by a given subscriber,
whether the metadata tagged to the specific publication matches the specific subscription predicate; in
which case the publication is delivered to the subscriber. Depending on the matching operation that
must be performed, the matching process can range from being trivial, to being very complex and
CPU-intensive.

The description given above is intentionally generic, as different subscription languages exist. In
fact, the literature distinguishes between different types of publish/subscribe paradigms, the most pop-
ular ones being topic-based and content-based publish/subscribe. Some other more specialized flavors
have also been proposed. These different flavors are described in the next subsections.

2.1.1 Topic-Based Publish/Subscribe

Topic-based publish/subscribe, sometimes referred to as channel-based communication, is perhaps the
most popular publish/subscribe paradigm, due to its conceptual simplicity and its potential scalability.
It is widely used in the industry, and many open-source [1] or commercial products exist. In topic-
based pub/sub, the subscription predicate is a key, usually a string, referred to as the topic. Upon
publishing, publishers tag their publications with a topic as metadata, so that subscribers subscribing to
a given topic receive all publications tagged with this topic [47]. As a shortcut, we generally write that
publishers publish to a given topic, which means that they issue publications that are tagged with the
topic as metadata. Conceptually, the matching process in topic-based pub/sub is simple. Subscriptions
can be stored in a hash table, with the topics as keys and the set of subscribers as values (for every
topic). When a publication needs to be matched, one simply needs to find its topic in the hash table
(Op1q operation) and obtain the corresponding set of subscribers.

Conceptually, topic-based publish/subscribe can be viewed as a specialization of attribute-based
publish/subscribe, which is described in the next section. It can also be seen as an evolution of group
multicast systems [44], in which clients can join logical groups and receive all messages sent towards
that particular group.
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Applications of Topic-Based Publish/Subscribe Mostly due to its simple data model, topic-based
pub-sub is widely used across various application domains, such as traffic alert systems, mobile device
notification frameworks (such as Google Cloud Messaging (GCM) used for sending push notifications
to Android devices), chat/instant messaging systems, extreme weather alert systems, social networks,
and many more.

In the Twitter example described previously, users can express interest in the identifier of other
Twitter users (followers). Upon publishing, Twitter users then tag their publications with their own
identifier, so that followers receive these publications. Facebook can also be viewed as relying on the
publish/subscribe paradigm. For instance, in Facebook’s instant messaging service (Messenger), one
can create group conversations. Relevant Facebook participants of a given conversation then subscribe
to receive messages from this conversation, and tag their outgoing messages (publications) accordingly
(for instance, with an unique identifier representing the conversation) so that messages are delivered
properly to relevant subscribers. At a high level, the Facebook friend system itself can also be viewed
under a publish/subscribe paradigm: relevant users subscribe to other users that they are interested
in (friends). Then, upon a given Facebook user publishing, the publication is delivered to all of that
person’s friends.

Multiplayer online games also constitute a popular application of topic-based publish/subscribe
systems. In such applications, topics are used to convey significant amount of information at a high
frequency rate. Multiplayer games will serve as our example application throughout this thesis, both
to demonstrate the use and publish/subscribe as well as to evaluate the load of such systems, as they
provide a convenient, popular and yet easy to understand model. More details about the networking
aspect of multiplayer games, as well as how they relate to topic-based publish/subscribe, are discussed
in section 2.6.

2.1.2 Content-Based Publish/Subscribe

Content-based publish/subscribe is a generalization of topic-based publish/subscribe in which the
matching process is done over the contents of the publications themselves, which yields much more
freedom and flexibility [84, 47, 88, 73, 10, 15, 50, 108]. In the most common scenario, publications
contain a set of attribute/value pairs, and subscription predicates are expressed as a range over values
for a given set of attributes. A publication then matches a subscription if its attribute values satisfy the
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subscription predicate.

2.1.2.1 Content-Based vs Attribute-Based

A dichotomy exists in the literature, however, as some authors prefer to use the term attribute-based

publish/subscribe for subscription languages involving attribute/value pairs, considering the fact that
content-based publish/subscribe models can go beyond attribute/value pairs [73]. For instance, in [91],
publications are in the form of XML files, and subscriptions are expressed as queries over the whole
XML contents, thereby allowing for more powerful content-based subscriptions. In any case, and in-
dependently of the subscription language, it is always possible that publications consist of metadata
and an opaque payload, and subscription queries are expressed over the metadata, which can be ar-
bitrarily complex (topics, attribute-value pairs, semi-structured data, etc.). Alternatively, it can be the
case that publications have no metadata, but only payload, and that subscriptions are expressed over
the contents of the payload. In regards to the matching itself and the overall architecture of a publish/-
subscribe service, however, there is little difference between the two. As a matter of fact, most work
in the literature refer to attribute-based systems as content-based, where the attributes are either in the
payload or as metadata. Throughout this thesis, we will follow the same line of reasoning and consider
attribute-based systems as part of the large family of content-based systems.

2.1.2.2 Typical Content-Based Example: Stock Auctions

The domain of stock auctions maps well to the content-based publish/subscribe paradigm, as this
paradigm allows for very fine-grained subscriptions. Under a topic-based paradigm, one would be
limited to registering interest in a string value only; for instance, a given stock symbol (ex: MSFT,
for Microsoft), or an index (ex: NASDAQ). Of course, multiple subscriptions could be registered for
multiple symbols or indices. Subscribers might however be interested in receiving publications match-
ing a more elaborate predicate, such as all stock quotes with a closing value greater than a given
amount (ą 100$) and belonging to the NASDAQ index, which is not possible with topic-based pub/sub.
Content-based pub/sub fills the shortcomings of topic-based pub/sub by allowing for more fine-grained
subscription predicates. As an example, the predicate {openingValue ă 50; closingValue ą 100;
index “ NASDAQ} could be used to subscribe to receive all publications related to stocks of the
NASDAQ index, with an opening value below 50 and with a closing value above 100. Publication
{openingValue “ 30; closingValue “ 200; index “ NASDAQ; city “ Montreal; symbol “ MSFT}
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would then match the predicate and thus, would be delivered to the subscriber(s) who registered this
specific subscription.

2.1.2.3 Limitations of Content-Based Publish/Subscribe

While more flexible, an important drawback of content-based publish/subscribe is that it involves a
more elaborated matching process. As opposed to topic-based publish/subscribe where one simply
needs to lookup a given key in a hash table, one would need to match every publication against all
subscriptions. Some optimizations are possible (a whole branch of the literature describe optimizations
that can be applied to the matching process of attribute-based and content-based systems), but the
matching process is never as simple and as fast as for topic-based pub/sub. For some applications
which require very fast matching and dissemination of a large and recurrent amount of publications,
such as games, we believe that topic-based pub/sub might yield to better performance; hence this thesis
focuses on such systems in the context of games.

2.1.3 Specialized Publish/Subscribe Paradigms

In addition to content-based (attribute-based) and topic-based publish/subscribe, there exists some
other, more specialized publish/subscribe paradigms. Spatial pub/sub systems are a special class of
pub/sub systems where subscribers subscribe to regions in a virtual space [62]. Such systems are tar-
geted towards geographical or spatial-based systems. GraPS [24] proposes a graph-based publish/-
subscribe paradigm, where the application domain is represented as a graph. Subscriptions and pub-
lications contain queries that determine a subgraph and a publication matches a subscription if their
subgraphs overlap.

2.2 Basic Architecture of Publish/Subscribe Systems

Publish/subscribe primitives (typically publish, subscribe and unsubscribe) are typically exposed by
a library that offers a publish/subscribe interface. Such a library typically connects to a middleware
platform that offers a publish/subscribe service at a low-level. For instance, in our implementation of
our Dynamoth platform used throughout this thesis, we used the Jedis Java library which provides
topic-based publish/subscribe (among other services). The library connects to an instance of a Redis
server which provides the low-level pub/sub service that we use.
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Thus, because multiple clients can interact with a pub/sub service, the typical pattern is to provide
publish/subscribe as a service that accept client connections (subscribers and publishers) through a
client-specific library, as it is the case with Redis. A publish/subscribe service typically performs the
following tasks:

‚ accepting connections from publishers and subscribers;

‚ receiving and storing subscriptions;

‚ receiving and matching publications;

‚ forwarding publications to interested subscribers.

In the case of topic-based publish/subscribe, the matching process is trivial; however, the delivering
of publications is the major overhead. For content-based publish/subscribe, however, the matching
overhead can be considerable, as the matching process can be more elaborated.

2.3 Scalability of Publish/Subscribe Systems

For simple applications, a given publish/subscribe service might be able to function properly with only
one server. However, as the number of subscribers, subscriptions and publications grow, the network
often becomes a bottleneck, and scalability beyond one server might be needed. Scaling publish/sub-
scribe systems brings a whole spectrum of challenges. This section presents the main publish/subscribe
scalability approaches found in the literature. First, broker-based scalability approaches are presented.
Then, scalability approaches that are built on a peer-to-peer paradigm are presented, followed by scal-
ability approaches that are designed for the cloud. A classification of the main publish/subscribe scal-
ability approaches is presented in table 2.1.

2.3.1 Broker-Based Scalability

A common way to scale publish/subscribe systems is to organize the available servers into a mesh-like
topology. In the context of pub/sub scalability, this is referred to as broker-based publish/subscribe, and
the individual servers are called brokers. Typically, brokers play two important roles: (1) they handle
subscriptions and publications, like a typical publish/subscribe server and (2) they route messages
to/from other brokers and to/from clients (subscribers/publishers). The broker overlay defines how
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Topic-based Content-based
Broker-based Dynatops (2013) Cheung et al. (2010), MEDYM (2005),

GEM (2016), MOVE (2012), Kyra (2004)
P2P-based Scribe (2002), Tera (2007), PolderCast

(2012), Tamara (2007), SpiderCast (2007),
Chockler (2007)

Most approaches based on Pastry/Chord:
PAPaS (2012), Li et al. (2010), PastryStrings
(2006), DPS (2006), Sub-2-Sub (2006),
Zhang et al. (2015) Tam et al. (2004),
Meghdoot (2004), Terpstra et al. (2003),
Bianchi et al. (2007), Chand et al. (2005)

Cloud-based To the best of our knowledge: no
cloud-specific research approaches found in
the literature

BlueDove (2011), StreamHub (2013),
E-StreamHub (2014), SEMAS (2014),
SREM (2014), Zhang et al. (2010)

Table 2.1: Publish/Subscribe Scalability Approaches

the brokers are interconnected, and to which broker any given client connects to. In some systems,
the broker overlay is built on top of a peer-to-peer substrate such as Pastry [89], or Chord [97, 98].
One characteristic of these peer-to-peer systems is that they dynamically build overlays connecting all
nodes despite failures or reconfigurations. Each node is guaranteed to be connected to other nodes, and
if a message has to be sent from one node to another, routing paths are established so that a message
typically do not need to traverse more than a logarithmic number of nodes in the overlay. We will
describe the details of the Pastry overlay in section 2.3.2.

2.3.1.1 Topic-Based Broker-Based Scalability

Dynatops Dynatops [110] is a broker-based publish/subscribe system that is built on the peer-to-peer
lookup protocol Chord [97, 98] in order to structure it’s broker overlay. Dynatops builds a multicast
dissemination tree over a broker overlay where publications go from one or several brokers to reach
all subscribers. However, the broker nodes are not peer-to-peer nodes despite the use of the Chord
peer-to-peer overlay: they are assumed to be dedicated nodes. Dynatops proposes algorithms to group
subscribers with similar interests on the same set of brokers. Dynatops is designed to handle scenarios
where subscriptions are short-lived. As such, Dynatops features a “reconfiguration manager”, which
is a centralized component that is in charge of analyzing the pub/sub environment (rate of outgoing
publications, change of subscriptions) and adapting the broker overlay to react promptly to changes.
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As part of the reconfiguration process, Dynatops aims at minimizing the number of brokers that
publications have to go through in order to reduce delivery times. However, for latency-constrained
applications, we think that a flat approach such as our Dynamoth platform that we propose at chapter 3
might be more suitable since all communications occur only in two hops (from the client to the server
and directly back to clients). Also, Dynatops is not specifically designed for cloud environments and
does not support dynamically adding/removing broker nodes; therefore, it’s scalability model is limited
to reconfiguring the system with the set of pre-allocated broker nodes.

2.3.1.2 Content-Based Broker-Based Scalability

Several non cloud-based approaches for scaling content-based publish/subscribe systems have been
proposed in the literature [29, 37, 36, 28, 86]. Although such systems are not cloud-specific, some of
them could nevertheless be deployed in a cloud setting.

Load Balancing for Content-Based Systems In [37], Cheung and Jacobsen, based on their previous
work [36], propose a load-balancing protocol for broker-based content-based pub/sub systems that is
built over the PADRES content-based publish/subscribe system [50] (described in section 2.5). In their
system, brokers are organized into clusters featuring edge brokers which subscribers are connected to,
as well as cluster-head brokers where publishers send their publications to. Each broker continuously
monitors it’s own load. If the load becomes too high, then a load balancing session is established with
another broker that can accept supplementary load, through a mediator component. As part as this load
balancing session, the two brokers involved exchange detailed load information for every subscription
and determine which subscriptions should be exchanged. The load balancing protocol notably proposes
several load offloading algorithms that can address several performance metrics.

MEDYM MEDYM [28] proposes a dynamic broker-based routing overlay for matching and dissem-
inating publications in content-based publish/subscribe systems. Each broker is responsible for a given
set of subscriptions, and publications are forwarded between brokers by building dynamic multicast
trees until all suitable brokers for a given publication have been reached.

Several additional contributions discuss further the problem of scaling the content matching and fil-
tering processes of broker-based content-based publish/subscribe systems, such as GEM [49], MOVE
[86] and Kyra [29].
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2.3.2 Peer-to-Peer Scalability

Peer-to-peer approaches are interesting as they do not require the use of a centralized infrastructure,
which can lead to cost reductions. In fact, peer-to-peer publish/subscribe approaches distribute the load
of the pub/sub service over the users of the service themselves, and not over a centralized infrastructure,
as it was the case for the models described at the previous section. Peer-to-peer systems are not a new
concept, as many applications relying over this paradigm, such as file sharing, have been proposed over
the years.

An advantage of peer-to-peer approaches is that they can somehow be more resilient in case of
failure compared to a central infrastructure. The disadvantage of these approaches is that because the
overlay is built over a large number of nodes (all users), the network is much larger than if only
dedicated brokers are used. As a result, a message will likely traverse many more nodes as it would be
the case in an overlay with dedicated brokers. Furthermore, as clients come and leave, the overlay is
much more volatile. Thus, this severe drawback can make peer-to-peer-based systems impractical for
some applications, such as latency-dependent multiplayer online games.

Several peer-to-peer approaches have been proposed in the literature for scaling publish/subscribe
systems . Many of these approaches are built on well-known peer-to-peer substrates such as Pastry [89]
or Chord [97, 98]. They give a better idea of the main principles, we discuss the base architecture of
Pastry before we introduce the peer-to-peer pub/sub approaches. Chord follows a similar approach to
Pastry.

2.3.2.1 Pastry

Pastry [89] is a general-purpose pure1 peer-to-peer substrate that is designed to support many different
applications, most commonly for file systems. Pastry’s architecture is based on a ring, where each node
is placed on the ring according to a uniquely assigned identifier. Each Pastry node maintains a routing
table that contains the IP addresses and unique identifiers of a set of other Pastry nodes. The routing
table is organized in such a way that it allows any given node to route a given message towards any
other node in the Pastry ring. More specifically, upon a Pastry node receiving a message addressed
towards a given identifier, it finds the node in its routing table that is numerically closest to the target

1As opposed to hybrid systems, no central entity is required.
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identifier, and forwards the message to that node. The process is repeated until the message reaches its
intended destination, which is the node that is globally numerically closest to the target identifier. The
size of the routing table is defined by a configuration parameter, which in turn defines the bound on the
number of hops needed to transmit a given message to any another arbitrary node (larger routing tables
allows for delivering in less hops). Typically, the number of hops needed is logarithmic to the number
of nodes.

The most common application for such a peer-to-peer overlay is to store files over a distributed
set of nodes. Each file is stored in the node whose identifier is closest to the identifier of the file. The
request for the file is then redirected through the overlay as described above. Peer-to-peer overlays are
designed to be dynamic, so they can be used for a variety of applications.

Upon adding a node, a portion of the load (e.g. set of files) of the two neighbor nodes is transferred
to the new Pastry node, as this new node then becomes in charge of the identifiers in the keyspace that
are closest to its own identifier. Similarly, upon removing a node, the two neighbor nodes absorb the
load of the removed node, since they become responsible for the new portions of the keyspace that are
closest to them. The Pastry library notably provides the basic infrastructure for nodes joining/leaving
the system, reorganizing the routing tables, and also supports up to a given amount of failing nodes
(for instance, by replicating files on neighbor nodes), which can help ensuring consistency.

2.3.2.2 Topic-Based Peer-to-Peer Scalability

Several peer-to-peer topic-based pub/sub scalability approaches have been proposed in the literature
[32, 39, 38, 94, 14, 78, 84]. These approaches are summarized in the following paragraphs.

Scribe Scribe [32] implements topic-based publish/subscribe over Pastry and was one of the first
attempts at proposing a decentralized multicast overlay architecture. In Scribe, a node acts as a rendez-
vous point for a given group (topic) and stores the list of members of the group/topic. A subscriber
node creates a “path” towards the rendez-vous node. All nodes perform forwarding of publications to
deliver publications in a reverse tree-like manner until all subscribers connected to each node along the
path have been reached, following the Pastry topology.

Tera Tera [14] proposes a peer-to-peer two-layered overlay approach for large-scale topic-based pub-
lish/subscribe systems. At the lower overlay layer, Tera builds and manages a graph structure that in-
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terconnects all nodes. For each topic in the system, an overlay is created at the higher layer, where
one node (subscriber) is elected as the leader and is in charge of dispatching messages to all other
subscribers. Publications from publishers are routed from the lower layer to the appropriate leader at
the higher layer.

PolderCast PolderCast [94] is another scalable peer-to-peer topic-based pub/sub system where all
subscribers for a given topic are interconnected using a ring overlay, but with additional random links.
Any publication reaching a subscriber can then reach other subscribers in a linear fashion (worst case)
or faster using the additional links. PolderCast notably aims at being more reliable than other peer-to-
peer approaches such as Scribe that notably depends on single rendez-vous points for topics, which
can be points of failures.

Other Approaches While Tamara [78] is not a new topic-based publish/subscribe system per se, it
aims at improving the efficiency of such systems by proposing a topic clustering / grouping mechanism.
Their model attempts to group topics with a similar set of subscribers together into topic-clusters in
order to reduce maintenance and dissemination costs. Extensive cost computations are made on a
regular basis to determine whether a given topic should be merged with a given topic-cluster and
whether two given clusters should be merged together. This cost computation is a bit in the same spirit
as our work on Dynamoth although the cost values are more blurry.

SpiderCast [39] and Chockler [38] are further P2P topic-based pub/sub systems that use distributed
protocols to optimize the routing overlay.

2.3.2.3 Content-Based Peer-to-Peer Scalability

Several peer-to-peer attempts at providing content-based publish/subscribe can be found in the litera-
ture [10, 74, 9, 13, 103, 109, 100, 59, 102, 22, 33]. As this is the case with topic-based systems, many
of these systems are built on top of overlay substrates such as Pastry [89] ([100, 9, 74]), Chord [97, 98]
([102, 59]) and CAN [87] ([59, 109]).

2.3.3 Cloud-Based Scalability

Cloud computing is an umbrella term and paradigm which refers to having computing resources (pro-
cessing power, storage, etc.) and even software stacks rented from a provider. The typical pattern is
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that third party hosting providers have a large pool of servers in datacenters connected via high speed
data links. Customers may wish to rent some amount of computing resources from the pool to perform
some tasks or to offer a given service to end-users. Instead of having dedicated computing resources,
renting computing resources from the pool can often be a cost saver. Scalability is a key concept of
cloud computing because customers can dynamically rent resources depending on their needs. Nowa-
days, many big providers offer a wide range of cloud computing services, such as Google, Amazon,
Microsoft, Apple.

As this is the case in many domains, the cloud can be used to efficiently scale publish/subscribe
systems. To the best of our knowledge, all research-oriented cloud-specific publish/subscribe scalabil-
ity approaches that we were able to find were for content-based systems. The following subsections
first describe the various cloud service models, and then describe the main cloud-based scalability
approaches found in the literature.

2.3.3.1 Cloud Service Models

The literature distinguishes between three cloud computing levels of service: Infrastructure as a Ser-
vice, Platform as a Service and Software as a Service.

Infrastructure as a Service (IaaS) Under the Infrastructure as a Service (IaaS) model, virtual ma-
chines (VMs) are provided to the end user. VMs are deployed on hypervisors which are server nodes
hosted at the provider’s datacenters. VMs-to-hypervisors assignations are managed by the cloud provider
using load-balancing algorithms. Mistral [66] is one example of an IaaS platform. Users must manage
the software stack and typically have full root access. This is a replacement for dedicated servers.

Platform as a Service (PaaS) Under the Platform as a Service (PaaS) model, the cloud provider
provides a computing platform to its customers, which are typically developers, with an already es-
tablished software stack. The software stack can include databases (relational or non-relational), web
servers and engines (Apache, PHP, .net, etc). VMs are abstracted. A key advantage of the PaaS model
is that the allocated infrastructure automatically scales to match the user’s needs in a typically transpar-
ent manner: if more VMs are needed to support a given PaaS service, then more VMs are transparently
allocated, since it is generally the responsibility of the PaaS service to auto-scale and reorganize itself
whenever required. Non-relational (“NoSQL”) databases [99] play a key role under PaaS architectures.
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A key example of a PaaS platform is Amazon’s Dynamo platform, which is a non-relational repli-
cated key-value store [42, 43]. The various cloud-based publish/subscribe systems that we describe in
the next section also fall under the PaaS model. In addition, our contributions to this thesis in terms
of providing scalable cloud-based services also fall in this category: Dynamoth (chapter 3), MultiPub
(chapter 4) and DynFilter (chapter 5) are all PaaS services that provides topic-based publish/subscribe
for given applications.

Software as a Service (SaaS) Under the Software as a Service (SaaS) model, the cloud provider
offers high level, ready to use software to the end-users. Such software is accessed through a thin-
client or more recently, via a web browser. Popular examples are well-known online email clients
such as Gmail or Outlook and online office/collaborative suites such Google Docs, Office 365, etc.
Scaling online services offered under the SaaS model ultimately require the scaling of the underlying
infrastructure and platform.

2.3.3.2 Consistent Hashing

Consistent hashing is a popular mechanism in cloud-based approaches where the load has to be dis-
tributed across several nodes in a dynamic fashion; that is, nodes need to be easily added and removed
and partial load needs to be moved from one server to the other.

Under a typical consistent hashing model, multiple virtual identifiers are assigned to each node in
the ring of nodes. For instance, in a ring with 100 nodes, with each node having 100 virtual identifiers,
then there would be 10,000 identifiers in the ring, mapping to the 100 nodes. Even without considering
the addition or removal of nodes, the mapping process in itself of a given key to a virtual identifier,
then to a given physical identifier, will then tend to be more uniform, compared to a non-consistent
hashing-based approach. For instance, if the nodes are used to store files, they will be more uniformly
distributed across the nodes. Another major effect of consistent hashing is that upon adding/removing
a node, consistent hashing will allow for the load to be spread more equally towards many nodes, and
not only towards the two neighbor nodes.

If used for topic-based publish/subscribe, consistent hashing can be used to map topics to different
servers in a naive way; for instance, by determining the virtual identifier that is closest to the name
of the topic by some distance measurement, and then assigning the topic to the server that hosts this
virtual identifier. Upon the current servers becoming overloaded, additional servers can be spawned,

19



2.3 Scalability of Publish/Subscribe Systems

and a portion of the load (topics) can be transferred from all current servers to the new server. Assuming
N servers, upon introducing an additional server, all current servers would then give 1{N th of their
load to the new server. Similar holds when removing servers. Note that part of Dynamoth’s contribution
(chapter 3) lies in providing a scalability model that allows for more flexibility than consistent hashing,
and we compare against consistent hashing in some of our experiments.

2.3.3.3 Content-Based Cloud Scalability

Basically, all cloud-specific research proposals in content-based publish/subscribe fall under the plat-
form as a service model [73, 16, 15, 76, 75, 108].

BlueDove The BlueDove system [73] proposes a brokerless, two-layered scalable content-based
(attribute-based) pub/sub system which features multi-dimensional subscriptions over a k-dimensional
attribute space. The attribute space for each dimension is split over a set of matching servers. A set of
dispatching servers are in charge of forwarding subscriptions and publications to the matching servers.
Subscriptions are forwarded to all relevant matching servers responsible for any of the attribute ranges
of the subscription (across all dimensions). Publications are forwarded to the most appropriate match-
ing server among any of the possible match. This forwarding mechanism takes load balancing into
consideration, so that the load can be split evenly across matchers.

While the mapping of attribute ranges to matchers across all dimensions is done in a distributed

hash table-like manner, BlueDove goes beyond a pure distributed hash table approach by altering the
mapping, in order to adapt to the skewness of the data, where some attribute ranges might more popular.

E-StreamHub Building on their previous work [16], the authors in [15] propose E-StreamHub, a
scalable 3-layered hierarchical stream processing model that provides a content-based publish/sub-
scribe platform in the cloud. According to the authors, the stream processing model and the decou-
pling and specialization of the tasks of the content-based publish/subscribe middleware lead to better
performance. Each layer acts as a service that is responsible for a specific task, takes as input either a
subscription/publication request (1st layer) or the output of the previous layer (2nd and 3rd layers). The
output of the layer is then forwarded to the next layer (1st and 2nd layer) or to one or more subscribers
(3rd layer).

Furthermore, each layer contains a set of “slices”, which are independent instances of the appropri-
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ate service for that slice. The number of slices in each layer can change in order to adapt to variations
in measured load (load balancing), by exploiting the scalability of the cloud.

The first layer (partitioning) partitions the subscription space across the different slices of the sec-
ond layer. Subscriptions are forwarded to the appropriate slice of the second layer, by means of hashing,
where publications are forwarded to all slices, so that matching can be done. The second layer (filter-
ing) performs matching of the publications in regards to the local subscriptions. Each slice forwards
the resulting set of matching local subscribers to slices of the third layer (dispatching), who dispatch
the publications to the subscribers.

System reorganization and migration operations are performed in a reliable way with the help of
ZooKeeper [64], which is a middleware that provides reliable data storage and coordination services
for highly distributed systems with many concurrent users.

SEMAS SEMAS [76] is a two-layered cloud-based scalable matching service for content-based
(attribute-based) publish/subscribe applications. In SEMAS, subscription and publication requests are
first sent to dispatching servers, who forwards them to matching servers. In the case of publications,
matching servers forward the publication to relevant subscribers.

Like BlueDove [73], SEMAS also considers a k-dimensional attribute space and maps the whole
attribute space to different clusters. Each “spatial” cluster corresponds to a given matcher node (a given
matcher can be in charge of multiple clusters) and is assigned using a consistent hashing technique in
order to reduce redistribution overhead.

SEMAS addresses two important challenges: (1) it proposes a mechanism (HPartition) to handle
subscription skewness (hot regions of the k-dimensional attribute space) while guaranteeing that each
publication can properly be processed by only one matcher. This is accomplished by dividing the
more active portions of the subscription space into multiple smaller clusters that can be remapped to
different matchers. (2) it provides a mechanism (PDetection) to automatically adjust matching capacity
elastically to adapt to variable publication arrival rate, by adding or removing brokers or by modifying
cluster-to-broker mappings. Note that the subscription space is still always assigned to matchers using
consistent hashing. SEMAS proposes a mechanism to maintain normal processing of publications
during reconfiguration by using the “current” configuration until all nodes are ready to use the “new”
configuration. The switch happens synchronously using a mutex-based approach. The synchronization
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aspect is also an important issue [72] that we address in Dynamoth, in which we propose resilient
reconfiguration protocols (section 3.4). In addition, Dynamoth also proposes a mechanism to address
subscription and publication skewness in topic-based pub/sub systems (section 3.2.4).

SREM SREM [75] is a broker-based scalable matching service for content-based pub/sub networks.
In SREM, all brokers are directly reachable through the Internet and can be located in different dat-
acenters. Publishers and subscribers connect directly to the brokers, and forwarding mechanisms are
setup to route publications and subscriptions among the different datacenters and brokers.

SREM builds upon SEMAS and proposes a k-dimensional subscription model also inspired by
BlueDove [73]. Brokers are arranged into clusters in a n-dimensional layered tree space. Clusters at
the lowest level (level 0) contain all available nB brokers. At the next level (level 1), two clusters
contain half of the brokers (nB

2
). At level 2, 4 clusters contain nB

4
brokers. The process is repeated for

all n levels. Each cluster maps to a portion of the subscription space. This scheme implies that as we
go higher in the hierarchy, clusters are responsible for a reduced portion of the subscription space. At
the highest level n, any broker inside a cluster can perform the matching for any publication within that
subscription space. Upon receiving a given publication or subscription, SREM describes an approach
that starts at the lowest level (level 0) and bubbles up towards clusters at the last level, in order to
determine a set of brokers that can handle the matching.

Another contribution of SREM is an improved mechanism to divide hot spots in popular subspaces
of the subscription space into smaller subspaces, which is inspired by the HPartition technique of
SEMAS. This allows for a more uniform mapping on the higher-level clusters and brokers.

Deploying Non-Cloud Systems in the Cloud In [108], the authors conduct a performance evaluation
of running two popular non-cloud-based pub/sub systems based on broker networks - PADRES [50]
and OncePubSub [65] - in the cloud using different approaches (black box, grey box and white box).
Under the black box approach, resource usage is monitored on the virtual machines (VMs). When
certain performance thresholds are reached, workload migration across hosts occurs using live VM
migration techniques. However, no new VMs are added nor removed. Under the grey box approach,
which has been implemented for PADRES, the workloads are monitored. When it is determined that
a given broker will be overloaded, a new replica broker is spawned, and a proxy broker transparently
redirects subscriptions and publications across the two brokers, so that the system still thinks that
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Approaches
Reliability, Fault Tolerance and Availability Yoon et al. (2011), Kazemzadeh et al.

(2009), Pubily (2012), GEPS (2016),
Chang et al. (2012)

Latency and QoS Optimization Bellavista et al. (2014), JMS, DDS,
PubSubCoord (2015), DCRD (2011),
IndiQoS (2005), SES (2014), Setty et al.
(2014)

Reducing Monetary Costs Setty at al. (2014), Heinze et al. (2013)

Table 2.2: Publish/Subscribe Reliability and Optimization Approaches

these two brokers are in fact only one. Finally, the white box approach takes the inner working of
the publish/subscribe system into consideration to perform load balancing, and allows for adding and
removing VMs. This approach has been implemented with OncePubSub only.

2.4 Reliability and Optimization of Publish/Subscribe Systems

Besides providing scalability, a publish/subscribe service should provide some reliability, fault toler-
ance and availability properties in order to handle various types of failures that can occur. In addition,
some publish/subscribe-based applications might exhibit specific requirements in terms of acceptable
latencies or QoS properties, or in terms of reducing monetary costs incurred by the use of the pub/sub
service. This section presents an overview of the main publish/subscribe reliability and optimization
approaches described in the literature, which are outlined in table 2.2.

2.4.1 Reliability, Fault Tolerance and Availability

Providing fault reliability, fault tolerance and availability brings interesting research questions, es-
pecially when it comes to synchronizing many nodes and providing delivery guarantees and proper
message ordering despite system failures. A seminal contribution in this area are the Lamport clocks
[72], which was one of the first papers to address the problem of synchronizing time in distributed
systems.

In the area of fault-tolerant publish/subscribe systems, there have been a few approaches described
in the literature [67, 68, 34, 107, 90]. Some of these research questions are also addressed in our
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Dynamoth system (chapter 3). This section presents some of the approaches discussed in the literature.

2.4.1.1 Modeling of Delivery Guarantees

[107] proposes a formal modeling of publication delivery and ordering guarantees and appropriate
reconfiguration operations for broker-based, content-based pub/sub systems. The model considers two
levels of delivery guarantees: (1) Strong Complete Delivery, where all publications from any given
publisher must be delivered to all subscribers, and (2) Weak Complete Delivery, where all publications
who do not go through a faulty broker must respect the strong complete delivery property. In addition,
the model also considers two message ordering guarantees: (1) Strong Ordered Delivery, where all
publications from any given publisher must be delivered in order to all interested subscribers and (2)
Weak Ordered Delivery, where all publications who do not go through a faulty broker must respect the
strong ordered delivery property.

These delivery and ordering guarantees proposed in this model bear some similarity with the dif-
ferent levels of guarantees that Dynamoth provides (see section 3). However, the details differ consid-
erably, as the Dynamoth architecture is fundamentally different (topic-based instead of content-based,
and flat instead of broker-based). Furthermore, the model presented here assumes that all publications
not already forwarded to a faulty broker are delivered, where Dynamoth can guarantee that all publi-
cations are transmitted in case of a faulty server (section 3.5).

2.4.1.2 Broker Overlay Reconfiguration

As seen in section 2.3.1, some broker overlay configurations might not be optimal for a given workload,
and it might be beneficial to optimize the overlay. In the case [107] presented above, the authors
propose a set of reconfiguration operations that can be applied to optimize the overlay, which are
chosen based on the desired level of delivery and ordering guarantees.

[67] proposes an approach to reconstruct the broker topology upon broker failure in broker-based
content-based publish/subscribe systems. The broker overlay is organized into a mesh-like layout simi-
lar to [110] or Scribe-like [32] approaches, where publications are disseminated in a multicast tree-like
manner. The system supports up to δ consecutive failing brokers, and upon broker B failing, traffic
from neighbor brokers is re-routed in such a way to avoid B. The process is repeated if adjacent bro-
kers are failing. The failure handling protocol however requires all publications to be confirmed by
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brokers and relayed to upstream brokers. While duplicates can still happen, they are detected and elim-
inated. A recovery protocol is also provided in the event where a failed broker is restored, so that the
subscriptions can be properly reassigned and the topology restored.

The Publiy system [68] is similar in spirit and also provides reliability and fault tolerance mecha-
nisms by having upstream brokers hold publications until successfully delivered by downstream bro-
kers. It also establishes optimized links to reduce the number of hops for publication delivery.

GEPS [90] proposes an approach to reconstruct the topology of content-based pub/sub systems
built on a tree topology following the failure of one or more brokers. This approach also ensures that
no messages are lost, and that messages are still delivered during failure recovery in order to minimize
latencies.

2.4.1.3 Byzantine Faults

In [34], the authors propose a set of protocols to address various Byzantine faults that can occur in
cloud-based pub/sub systems, notably for subscribers, publishers and brokers. For instance, a faulty
broker might delay the delivery of some publications, reorder them, corrupt subscriptions or publi-
cations. A publisher could send irrelevant publications or flood with a large amount of publications,
where a subscriber might perform a large amount of unnecessary subscriptions to generate more traffic.

2.4.2 Latency and QoS Optimization

Some applications relying on a publish/subscribe paradigm require meeting strict latency bounds. A
popular example of such applications are multiplayer online games, in which the gameplay quality
can be severely degraded if publications are not delivered within a reasonable delay (section 2.6). In
some cases, it is necessary to bound the delivery times of publications, which means that steps have
to be taken to guarantee that such publications are delivered within a maximal time frame. In order to
support latency-constrained applications, the publish/subscribe middleware must be designed to take
the latency needs of such applications into consideration.

As this is the case in many other domains, the latency requirements of pub/sub-based applications
can also be expressed in terms of quality of service (QoS) requirements. As such, some QoS-aware
publish/subscribe systems have been proposed in the literature, which provide various QoS guarantees.
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[19] surveys several QoS-based approaches in the context of wide-scale pub/sub systems. Besides
bounded delivery times, several QoS properties can be specified, such as guaranteed delivery, reliability
and uniqueness. In some QoS-based systems, an expiration time can be set for publications, and all
expired publications are rejected by subscribers [8]. A major drawback of many QoS-based approaches
is that they require a network which supports QoS properties. While LANs and WANs can be designed
to support QoS guarantees, this is generally not the case for Internet communications, which operates
on a best-effort basis.

Our Dynamoth (chapter 3) also aim at reducing message delivery times by employing several mech-
anisms. Our MultiPub contribution (section 4) goes further in that direction by allowing one to impose
delivery time constraints on topics, in a cloud-based global-scale setting. It is important to mention,
however, that our systems still operate on a best-effort basis, due to the aforementioned lack of QoS on
Internet-scale communications.

The following subsections highlights some of the main contributions in the area of optimizing
latency and providing QoS guarantees in the context of publish/subscribe systems.

Data Distribution Service (DDS) The Data Distribution Service (DDS) from the OMG group [6]
proposes the specification of a rich software architecture for QoS-constrained data delivery schemes,
with an emphasis on pub/sub applications. The architecture provides support for both topic-based and
content-based publish/subscribe, and specifies several QoS properties that an implementation of the
standard can follow. However, since DDS is only a specification, the expected performance is com-
pletely dependent on specific implementations of the standard, as well as the QoS properties that im-
plementers choose to follow. In addition, while DDS implementations can be cloud-based, the standard
itself is not specifically tailored for cloud environments.

PubSubCoord The PubSubCoord system [11, 12] provides a multi-layered, broker-based cloud co-
ordination system for WAN-scale topic-based publish/subscribe systems. An instance of a publish/-
subscribe service is deployed in each local network. A set of cloud-based routing brokers interconnect
all local publish/subscribe services to provide a bridge allowing publishers and subscribers in different
networks to be interconnected. Thus, for publishers and subscribers in the same network, the local pub-
lish/subscribe service is directly used (one hop), while for publishers/subscribers in different networks,
one or more routing brokers have to be used (two or more hops).
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Since the routing layer is cloud-based, it can horizontally scale in terms of the amount of brokers
needed, although the scaling mechanism is not precisely described. Similarly, vertical scaling is also
provided by properly mapping topics to brokers (load balancing) and building an efficient inter-broker
overlay.

PubSubCoord also provides some degree of fault tolerance among routing brokers using ZooKeeper
[64] to assist in performing coordination. However, fault tolerance is not provided for local publish/-
subscribe systems. The authors claim that the performance in terms of delivery times in wide-area
networks can be impacted by two main factors: (1) the network congestion, which they claim can be
alleviated by the cloud scalability and an efficient mapping of topics to brokers and (2) by the inter-
broker forwarding mechanism. For latency-critical applications, the different local publish/subscribe
systems can be interconnected, which results in one less hop.

Local publish/subscribe systems use the Data Distribution Service (DDS) specification, and some
of the QoS policies of the DDS standard are used to express the QoS, latency and fault tolerance needs
of PubSubCoord-based applications.

DCRC DCRD [58] is a routing algorithm for broker-based topic-based pub/sub systems which se-
lects the most optimal path towards recipients, in order to meet QoS requirements. Publications are
dynamically forwarded from the publisher to the subscriber through a series of interconnected brokers.
Subscribers can specify a delay requirement with their subscriptions. Each broker dynamically decides
to which broker the publication should be forwarded next by taking into consideration the delay re-
quirements, inter-broker latencies as well as the list of failed brokers. Since brokers must confirm the
transmission of each publication to the upstream broker, faulty brokers can be detected. Therefore,
DCRD can guarantee the transmission of each publication even in the presence of faulty brokers and
thus also provides some fault tolerance. Changes to the broker topology are also propagated between
brokers.

IndiQoS [30] is yet another middleware that proposes QoS guarantees, in broker-based publish-
subscribe systems. However, it specifically requires a QoS-enabled network, which makes it imprac-
tical for Internet and/or cloud deployments. In [61], the authors propose SES, a flat scalable pub/sub-
based event dissemination platform built on the XMPP protocol. SES notably monitors the QoS in
terms of publication latency and attempts to minimize such latencies. In [92], the authors propose a
model that aims at maximizing topic-based pub/sub subscribers’ satisfaction in resource-constrained
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environments.

2.4.3 Reducing Monetary Costs

Some publish/subscribe applications generate massive amounts of messages, which in turn generate
significant network traffic. Section 2.3 already discussed the challenges of load balancing pub/sub
systems over several machines. Another problem that stems from high data usage is that in a cloud
setting, network usage translates to costs, as outgoing data is typically billed based on the amount
used. For data-hungry applications deployed in a cloud setting, costs can become very expensive.

In addition to having strict latency needs, multiplayer games are also good examples of data-hungry
applications, as they generate a large amount of messages at a very frequent interval. To the best of our
knowledge, very few approaches [93, 60] covered the aspect of reducing cloud-related costs incurred
by publish/subscribe systems, which is an important contribution that our MultiPub system (discussed
at chapter 4) provides and, indirectly, our DynFilter system (discussed at chapter 5). The two relevant
approaches that we found are discussed below.

Setty and al. [93] propose a model for efficient resource allocation in the context of topic-based
pub/sub systems, in order to reduce cloud-related costs and satisfy subscribers’ interest. Their ap-
proach notably takes into consideration the VM-related costs, the bandwidth costs and the outgoing
bandwidth capacity of the cloud VMs in order to perform efficient load balancing. The optimization
criteria is the total costs. Evaluations have been run with a simulation approach using traces from Twit-
ter and Spotify. Similar to them, MultiPub also solves an optimization problem, but our constraints
consider message delivery time, and we consider a global-scale deployment of our service in many
cloud regions. Furthermore, MultiPub is implemented as a prototype and evaluated in real cloud set-
ting.

[60] aims at measuring the cloud-based costs incurred of running stream processing applications in
a cloud setting. Their approach notably takes into consideration the costs of multiple cloud providers.

2.5 Popular Commercial and Open-Source Publish/Subscribe

While we are aware of very few research papers that present cloud-based topic-based pub/sub scala-
bility, several enterprises provide large-scale pub/sub systems in the cloud as a service. Google offers
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a scalable pub/sub system that delivers messages at low latency with guaranteed delivery [7], for all
kinds of applications. Google Cloud Messaging [4] is Google’s topic-based pub/sub infrastructure that
allows services to send push notifications to Android devices through the cloud. Amazon SNS [2] is
another example of topic-based pub/sub service for push notifications. Microsoft Azure [27] is Mi-
crosoft’s Cloud platform that offers a variety of services including a topic-based publish/subscribe
interface.

Apache Hedwig [3] and Kafka [71] are two popular publish/subscribe open source systems which
offer some form of scalability by allowing for manual addition and removal of nodes. However, they
cannot be qualified as elastic because automatic addition/removal of nodes based on measured load is
not done. PADRES [50] is the well-known University of Toronto’s scalable content-based publish/sub-
scribe platform developed for research purposes that is used across a wide range of projects.

2.6 Multiplayer Games as a Publish/Subscribe System

Multiplayer games constitute good applications of topic-based publish/subscribe, since the richness of
this paradigm and the logical decoupling of content producers from content subscribers map well to the
game semantics. In addition, games bring several scalability challenges, as they often generate large
amounts of publications at a very frequent interval, and they typically exhibit strict latency needs. For
these considerations, we decided to use game applications throughout this thesis for illustration and
demonstration purposes.

In the context of a multiplayer or massive multiplayer online game, players are located in the same
virtual world space. In order for the game to operate properly, players typically have to receive game
state update messages at a frequent interval [40, 104, 21, 80, 82] from other players and other relevant
in-game entities. Generally, upon receiving a state update, the game client usually performs some kind
of game-dependent processing and updates the graphical display.

2.6.1 Latency Requirements of Multiplayer Games

The dissemination infrastructure of multiplayer games must ensure that all relevant state update mes-
sages are delivered in a timely fashion in order to meet the strict requirements of the various types of
games, while coping with the highly variable bandwidth needs of such games.
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Due to their fast-paced nature, first person shooter (FPS) games typically require up to 20 game
states updates per second, which corresponds to update messages every 50 ms. Studies have shown that
the gameplay quality degrades significantly [40, 104, 80, 18] when latencies go beyond 150ms. On the
other end, massive multiplayer online games (MMOG) have more relaxed requirements, accepting
latencies of 150-200ms and even more, depending on the nature of the game.

2.6.2 Bandwidth Needs of Multiplayer Games

The amount of players in a given game at any given time is not constant: players are more likely
to be playing at certain periods of the day or of the week [101]. Also, because massive multiplayer
online games (MMOGs) feature large-scale virtual worlds, players in such games often exhibit flocking
behavior [85, 35], where a large amount of players gather towards the same popular locations on the
map (towns, popular quests, etc.). Flocking can draw a lot of outgoing bandwidth from the servers
since the number of messages that need to be transmitted within the flocking area increases in a near-
quadratic way. If not handled properly, it can cause a game to collapse2. Over the years, there has been
extensive attempts in the literature at proposing scalable multiplayer game architectures [56, 79, 70,
45]. [35] notably attempts to mitigate the flocking phenomenon in MMOGs. Thus, because of those
phenomena, bandwidth use within a game is subject to variation over time.

2.6.2.1 Adjusting the Contents and the Frequency of Update Messages

In the simplest case, players receive state updates from all other players and virtual objects. Assuming
that every player generates messages at a regular interval, such a scheme does not scale well, as the
number of messages delivered grows Opn2q to the number of players in the game. As each message
delivered generates bandwidth, servers can quickly become overloaded.

In the same research orientation as our DynFilter work, presented in chapter 5, some approaches
have been proposed that aim in reducing bandwidth usage in games [104, 21, 106]. Two seminal ap-
proaches are WatchMen [104] and Donnybrook [21], which propose mechanisms to reduce bandwidth
use in peer-to-peer-based games by reducing the rate at which updates are delivered for players located
outside of other player’s vision range. More specifically, full updates are sent only to the k-most in-

2http://www.gamespot.com/articles/blizzard-addresses-warlords-of-draenor-server-prob/1100-6423584/ [Aug 18,
2015]
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terested players within a given player’s vision range. Players located in the vicinity but not in the list
of k-most interested players receive different, less frequent messages, that contain data used to aid in
performing dead reckoning which are techniques that are used to approximate the position of players
or other objects in presence of high latency or infrequent updates [111, 77, 83, 69]. Finally, players
located very far receive sporadic state update messages. Thus, these approaches do not only vary the
frequency of message delivery, but also the contents of state updates. In contrast, our proposed sys-
tem, DynFilter, automatically adjusts the update frequency depending on the number of players in the
vicinity. It is also worth mentioning that DynFilter is cloud-based, unlike these two approaches that are
peer-to-peer-based.

2.6.2.2 Interest Management: Limiting Game-Related Messages

As explained at the previous section, it might not be necessary for all players to receive state updates
regarding all other players and in-game entities. At a high level, interest management techniques are
used to restrict the information that any given client/player p will receive, and make sure that p will
not receive state updates that are not relevant based on the current state / context of p. Most interest
management techniques exploit the topology of the map to determine in which clients and in-world
objects any given client p might be interested in (area of interest - [20]). The various interest man-
agement approaches fall into two main categories: object-based interest management and tile-based

interest management.

Object-Based Interest Management In object-based interest management, p registers interest in
all entities located within a fixed radius of p. This approach typically involves a centralized interest
manager component [70] continually tracking and recomputing the interest sets for all players, which
might be a more CPU-intensive process. However, it offers high granularity.

Tile-based Interest Management In tile-based interest management, the virtual world is split into
a set of interconnected tiles (usually triangular, but other shapes are also possibles such as squares or
hexagons), and p registers interest in all tiles (partially) located within a certain radius of p. The interest
management process is simplified since the interest manager only has to keep track of the tile in which
every player (or other relevant in-game entity) is located.

The two approaches described at the previous section (Watchmen and Donnybrooke) were exam-
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ples of object-based interest management. On the other hand, the Mammoth system [70, 45] proposes
a hybrid approach where players first express interest in tiles, which are then used to communicate a
list of entities that the player will individually subscribe to. Some approaches also take into account
the topology of the map to make sure that a given client cannot be interested in an area which would
be invisible to him (for instance, an area hidden by a wall or inside/outside a house) [70, 23].

2.6.2.3 Using Topic-Based Publish/Subscribe to Model Interest Management in Games

The publish/subscribe paradigm can be used to express interest relationships between the various in-
game entities [70, 80]. More specifically, the topic-based publish/subscribe paradigm can be used to
model interest subscriptions and message dissemination for the two approaches mentioned in the pre-
vious section.

Object-based Interest Management In the case of object-based interest management, a topic name
(string) is generated for every player p and every relevant entity (e.g., Player202 or Container5032).
p receives a list of all players/entities in its area of interest and establishes individual subscriptions to
all relevant object-topics. Upon being notified of objects to be added or removed from p’s interest set, p
invokes proper subscriptions and unsubscriptions. p publishes its state updates to its own player topic.

Tile-based Interest Management In tile-based interest management, a topic name (string) is gener-
ated for every virtual tile (e.g., Tile23). p automatically determines in which tile it is located, or gets
this information from the infrastructure. p then automatically subscribes to the topic corresponding to
the tile in which it is located, and publishes its own state updates on the same topic. The problem arises
where p might be located near the edge of two or more tiles. p should then subscribe not only to one
tile, but to a set of tiles located around p.

It is worth noting, however, that other pub/sub paradigms than topic-based publish/subscribe can be
used to model interest management in games. Notably, in [26], the authors evaluate and compare how
different pub/sub architectures (topic-based and content-based) can be used in the context of MMOGs
to efficiently process message delivery as well as some other game-related tasks such as interest man-
agement. On the other end, [63] and [80] are two systems that make use of spatial publish-subscribe
to perform interest management in games, as well as to scale such games. The various contributions to
this thesis (Dynamoth, MultiPub and DynFilter) adopt the tile-based approach as it was conceptually
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simpler from an implementation and experimental standpoint.

2.6.3 Cloud Gaming

Cloud gaming [96, 41, 95] has been a hot research topic in the last few years. As an alternative to
providing dedicated cloud-based services for games, cloud gaming involves running whole games
(clients and servers) in the cloud: game players play using thin clients that stream a live video of the
game and transmit user input back to the server. Cloud gaming brings interesting properties such as
having all game-related state updates sent over an internal network (clients and servers in the same
cloud), thus potentially leading to less finer-grained interest management, an increased security and
the ability to play on multiple devices with minimal porting efforts. However, there are also drawbacks
such as high cloud bandwidth use (which might be very expensive) and high client bandwidth use,
which might be limited and might be very costly on mobile data plans, despite using degradation
techniques [41]. Latencies will also be higher [96], which might be problematic for latency-sensitive
games such as FPS.
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3
Dynamoth: Scalable and Available

Publish/Subscribe

Dynamoth [53, 52] is a scalable, elastic cloud-based topic-based middleware that supports any number
of publishers, subscribers and publications. Any application making use of general purpose topic-based
publish/subscribe is supported, with a specific emphasis on latency-constrained applications such as
multiplayer and massive multiplayer online games.

The Dynamoth approach differs in several aspects from the various scalable topic-based publish/-
subscribe systems found in the literature (section 2.3). Notably, such approaches were either peer-to-
peer-based or broker-based, and not really designed for the cloud (although some cloud-based ap-
proaches were presented for scaling content-based publish/subscribe systems, described in section
2.3.3). As mentioned before, to the best of our knowledge, no cloud-specific topic-based publish/sub-
scribe scalability approaches were proposed in the literature. In this regard, we think that Dynamoth
and its numerous characteristics, such as its flat publish/subscribe approach, as well as its scalability
and fault tolerance models, bring interesting novel contributions in the area of scaling such systems.

3.1 Dynamoth’s Main Contributions

Dynamoth’s main contribution lies in providing a transparent horizontal and vertical cloud scalability
mechanism in the context of topic-based publish/subscribe systems by proposing a dual-layer load
balancer that operates at two hierarchical levels: at the system level (macro load balancing) and at the
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topic-level (micro load balancing).

At the system-level, Dynamoth proposes a dynamic mechanism to distribute the responsibility for
individual topics across multiple publish/subscribe servers. Whenever the popularity of some topics
changes, new topics are introduced or topics are removed, Dynamoth dynamically adjusts the load
on individual servers. Furthermore, when the total load increases or drops significantly, Dynamoth
automatically adds or removes publish/subscribe servers by spawning/despawing nodes in the cloud
to optimize cloud infrastructure-associated costs. At the topic-level, Dynamoth is capable of handling
cases where specific topics have extremely high load, possibly orders of magnitude larger than other
topics. Such situations can happen if a topic has a very large number of publishers, subscribers and/or
publications.

In addition to Dynamoth’s scalability properties, Dynamoth also provides high availability and fault
tolerance using an efficient failure detection and publication recovery mechanism, as a second major
contribution.

In summary, the Dynamoth platform provides the following contributions:

‚ We provide a scalable topic-based publish/subscribe infrastructure where topics are distributed
across many publish/subscribe servers. Clients are made aware of the topic assignments so that
they can send their publications and subscriptions to the correct publish/subscribe servers, lead-
ing to low latency as no indirections occur.

‚ Our approach provides load-balancing and elasticity at the system-level. Topic assignments can
change, and servers can be added or removed from the configuration on the fly as the work-
load patterns change. Reconfigurations do not interrupt message processing, and messages are
guaranteed to be received by all subscribers despite the reconfiguration.

‚ Our approach provides load-balancing and elasticity at the topic-level. Highly-loaded topics can
be replicated across several publish/subscribe servers in order to avoid overload or overly high
response times.

‚ Dynamoth also provides performance-driven availability and fault tolerance by proposing a
transparent, efficient failure detection and recovery mechanism. Different guarantee levels are
supported for every topic. Notably, Dynamoth can guarantee that all publications over a given
topic are delivered in FIFO order in the event of server failure.
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3.2 System Model

‚ We have implemented Dynamoth on top of an existing open-source publish/subscribe system,
namely Redis, without any changes to Redis itself. Thus, we can take advantage of an already
existing, highly-optimized publish/subscribe system. We believe that the concepts presented in
this paper could be implemented on top of other publish/subscribe systems, as long as they
offer the standard publish/subscribe interface: subscribe, unsubscribe and publish

operations.

We have evaluated the performance of Dynamoth by conducting extensive experiments over a massive
multiplayer game application instead of simulations which can produce less reliable results in the con-
text of multiplayer games [46]. Our results indicate that Dynamoth performs significantly better than
a consistent hashing-based approach (section 2.3.3.2), and that it is able to adapt quickly to complex
workloads that continuously change. Notably, our experiments on this large-scale game application
revealed the following:

‚ Dynamoth is able to handle 60% more simultaneously active players with the same set of pub-
lish/subscribe servers than the consistent hashing approach.

‚ Dynamoth is properly able to handle large-scale workloads that are subject to high variation over
time, while minimizing the number of required publish/subscribe servers, and keeping average
latency low.

‚ Dynamoth is able to promptly detect and recover from server failures, and ensure that all po-
tentially missed publications are retransmitted without hindering the performance of the pub-
lish/subscribe infrastructure. Furthermore, the performance of the different guarantee levels that
Dynamoth provides is compared.

3.2 System Model

In the following subsections, we describe the main highlights of the Dynamoth architecture. The soft-
ware implementation of Dynamoth is described thoroughly in section 6.1.
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3.2 System Model

Figure 3.1: Dynamoth Architecture

3.2.1 Naming Conventions

Throughout this thesis, we usually refer to P as a publisher, S as a subscriber and T as a topic within
a publish/subscribe system. A publication message is denoted as M . A client to the publish/subscribe
system is denoted as C. A given client C can be a publisher to a set of topics and a subscriber to a set
of topics. The two set of topics can overlap, which means that a given client can be at the same time
a publisher and a subscriber to a common set of topics. In the case of multi-server publish/subscribe
systems, H (host) refers to a publish/subscribe server.

3.2.2 Architecture

The Dynamoth architecture is depicted in figure 3.1. The core of the system is a set of standard,
independent publish/subscribe servers (H1 to H3 in the figure) that handle message dissemination
between all clients. In our implementation, each server represents an instance of the Redis [1] pub/sub
server software, but it should be simple to replace Redis by any other publish/subscribe middleware
with a standard API.
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3.2 System Model

In our approach, we deploy on each node in the cloud a standard publish/subscribe server and
two further components, a local load analyzer (LLA) coupled with a dispatcher (D). The local load
analyzer performs real-time monitoring of the load on the pub/sub server. The dispatcher module is
needed during system reconfiguration to guarantee that messages are forwarded to all subscribers.

There exists one load balancer node in the cluster that gathers input from all the local load analyzers
and aggregates all the metrics. It determines if a configuration change is needed (e.g. whether some
publish/subscribe server is overloaded). If this is the case, it determines how to balance the load in
the system. To this aim, Dynamoth proposes the concept of a plan, which is used to resolve to which
publish/subscribe server a given publication or subscription should be sent to. The plan is a more
elaborate version of a lookup table where the keys are the topics and the values are the list of servers
that should be used for each topic. Whenever a new plan is generated, it is propagated to the dispatchers
located on the publish/subscribe server nodes. The dispatchers need this plan to ensure that all messages
are forwarded to all subscribers during reconfiguration.

Clients interact with the system through the Dynamoth client library. The client library exposes
a standard publish/subscribe API. In our implementation, it corresponds to the original Redis API.
The Dynamoth client library uses a client-specific plan to determine to which of the publish/subscribe
servers to send publications and subscriptions to. The actual sending of messages is done using the
standard Redis client library.

3.2.3 Delivery and Ordering Guarantees

In the absence of failure, Dynamoth always provides reliable delivery for all topics. That is, the mes-
sages sent by a publisher on a given topic are received by all subscribers of this topic unless a compo-
nent (publisher/subscriber/server) fails. Furthermore, it provides FIFO ordering, that is, the messages
of an individual publisher to a specific topic are delivered to all subscribers in the order they were sent.

In case of server failures, Dynamoth offers a variety of guarantees. For every topic, a specific level
of reliability can be set. If subscribers for a given topic can tolerate lost messages in the unlikely
event of a server failure, a more efficient failure handling mechanism can be set for that topic. In the
case where subscribers must receive all publications on that topic despite server failures, a more rigid
yet less efficient failure handling mechanism can be used. Similar holds for ordering: one can define
for any given topic whether, in case of failures, FIFO order must be maintained or a more efficient
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(a) No Replication (b) All-Subscribers Replication (c) All-Publishers Replication

Figure 3.2: Topic Replication Strategies

best-effort ordering can be used.

As long as there are no failures or reconfigurations, messages are delivered exactly once in FIFO
order simply because we use TCP as underlying communication layer. However, care has to be taken
when the system configuration changes or failures occur. To handle these situations, we tag all mes-
sages sent by publishers with the identifier of the publisher (sender) and a sequence number. Thus, the
combination of identifier and sequence number provides a unique message identifier, and the sequence
numbers will help us deliver messages in FIFO order in case of configuration changes. We will give
more details as we discuss the different aspects of Dynamoth.

3.2.4 Mapping Topics to Publish/Subscribe Servers

Since Dynamoth is brokerless (direct link from publishers and subscribers to pub/sub servers) and
makes use of multiple servers in the cloud, we need an efficient way of determining to which server
any given topic should map to. As such, Dynamoth supports three approaches of how to assign topics
to publish/subscribe servers (see figure 3.2). In the figure, we consider a topic T , a set of publishers
(P-nodes) that will be publishing to T , a set of subscribers (S-nodes) that will be receiving publications
flowing through T (subscribers of T ) and a set of publish/subscribe servers (H-nodes) that will be used
to route publications from the publishers to the subscribers.
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3.2 System Model

In most cases, a topic T is assigned to one publish/subscribe server H, and clients send subscription
requests and publications for topic T toH (figure 3.2a). This single-server mapping will work for most
topics. However, in some scenarios, the number of subscribers, publishers and/or publications on a
given topic T might be too large for only one publish/subscribe server. For instance, if a given topic
T has a very large number of subscribers, then this might lead to too many simultaneous connections
on the publish/subscribe server. This can also lead to important increases in the message processing
delay since the publish/subscribe server has to send the same messages to all subscribers at the same
time. If T has too many publications, then this could cause too many messages to flow on T , thus
potentially overloading the publish/subscribe server (even if the server is in charge of that sole topic),
or overflowing individual connections between the publish/subscribe server and a subscriber.

To address the requirements of such heavy-loaded topics, Dynamoth performs load-balancing at
the topic-level by allowing for more than one publish/subscribe server to map to any given topic. We
refer to this as topic replication. Dynamoth proposes two topic replication approaches depending on
the overload situation. In both approaches, several publish/subscribe servers are responsible for the
topic, but they differ in the way subscribers subscribe to the topic and how publishers publish their
messages. In both cases, it is important that all subscribers receive all publications regardless of which
publish/subscribe server has been used to process the publication.

3.2.4.1 All-Subscribers Replication

With all-subscribers replication, all subscribers send their subscription requests for T to all the pub-
lish/subscribe servers responsible for T while publishers send their message for T to only one of the
servers responsible for T . In figure 3.2b, the three servers H1, H2 and H3 can be used to process publi-
cations flowing through T ; each publisher sends its publications through a random server (in this case,
P1 publishes to H2 and P2 publishes to H3) and all subscribers have subscriptions to T on all servers
H1, H2 and H3 thus making sure that whichever server is used, all subscribers receive all publications.
This replication scheme is relevant if there is a very high number of publishers and/or messages to be
transmitted on T but the number of subscribers is within the limit of what a single publish/subscribe
server can handle in terms of connections. An example from gaming could be a topic which is used by
clients to send position updates within a tile of a virtual world. The publishers are the players that con-
trol avatars located in the tile, publishing position and state updates at a high frequency. The subscribers
are the game servers responsible, for example, to perform interest management for the tile. With all-

40



3.2 System Model

subscribers replication, a player chooses a random publish/subscribe server for its publications, thus
distributing the high message load over several servers.

3.2.4.2 All-Publishers Replication

With all-publishers replication, a subscriber subscribes to only one of the publish/subscribe servers in
charge of T , while publishers send their publications to all servers. In figure 3.2c, once again all three
servers H1, H2 and H3 can be used to process publications flowing through T . Each publisher sends
its publications to all servers, which requires sending n messages (n being the number of publish/sub-
scribe servers that handle T ), while each subscriber subscribes to T on one specific publish/subscribe
server, and thus, receives the message once. This replication scheme is relevant if there is a very high
number of subscribers for topic T , but a relatively low number of messages, because each publication
message is sent n times. An example from gaming could be some form of broadcast topic through
which a game server communicates some world-wide events that are of interest to all players. Without
replication, a single publish/subscribe server might take a long time to disseminate such a publica-
tion to all subscribers, violating response time requirements. In contrast, when the message is sent to
many publish/subscribe servers, the publish/subscribe servers can forward the message in parallel to
the many subscribers.

3.2.4.3 Message Ordering with Replication

While Dynamoth is in a stable state (no reconfiguration), all messages of a publisher P to T are
received in sending order without any extra precaution. When there is only one server H for a topic
T , this is trivially true, as we use TCP connections between P and H, and H and all subscribers of T ,
and H processes the messages in the order it receives them from P . With all-subscribers replication,
P chooses a random server Hi among all available servers for T, and then sends all its publications
to Hi. Thus, all subscribers receive all publications from P in FIFO ordering; thus the FIFO ordering
guarantee is preserved for any given publisher. For all-publishers replication, a subscriber, as it is
only connected to one of the servers Hi, will receive all the messages from Hi, and Hi handles the
publisher’s messages in FIFO order.
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3.2.5 Bootstrapping and Initial Conditions

Initially, a Dynamoth system contains a set of one or more publish/subscribe servers and an initial
global plan (“plan 0”) which does not provide any specific topic mapping. When a plan does not
contain mapping information for a topic (at startup and whenever new topics are dynamically created),
it uses a consistent hashing algorithm to map the topic to a publish/subscribe server. This allows for
some form of initial form of load distribution among all servers. Over time, the plan is updated when
topics are assigned to publish/subscribe servers because of load balancing and topic replication. All
dispatchers on the publish/subscribe server nodes always have an up-to-date copy of the complete
current global plan.

3.2.5.1 Initial Consistent Hashing

By default and when a given topic T doesn’t need to be included as part of a load balancing operation,
the publish/subscribe server responsible for topic T is determined through consistent hashing. Let
H1,H2,..., HNH

be the set of all available publish/subscribe servers, and let V1,V2,...VNV
be a set of

virtual identifiers. Each server is assigned a set of these virtual identifiers. Typically,NV is considerably
larger than NH , i.e., each server is assigned a large number of virtual identifiers. Let mappViq be
a function that, given a virtual identifier Vi as input, returns a server. The mappViq function uses a
consistent hashing algorithm so that the removal of one server leads only to the remapping of the
virtual identifiers that were assigned to that server, and when adding a server, an equal number of
identifiers assigned to each of the old servers gets reassigned to the new server. That is, a remapping
only remaps VH

NH
identifiers. It is also assumed that mappViq is deterministic.

Algorithm 3.1 explains the mechanism by which the default server HT
d is selected for topic T

considering NV virtual identifiers. First, the identifier of the topic is hashed using a common hashing
function so that no two topics share the same integer hash value (Thash). Then, an appropriate virtual
identifier TV is selected (modulo operation). Finally, we use the map function to determine to which
server TV maps to.
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function SelectDefaultServer pNV , T q
begin

Thash Ð hashpcq;
TV Ð Thash mod NV ;
Td Ð mappTV q;
return Td;

end
Algorithm 3.1: Selecting Default Server

3.2.5.2 Maintenance of a Client’s Local Plan

Each client C maintains a client-specific partial plan P pCq, which we refer to as the local plan. The
local plan is a partial view of the global plan which is known by the load balancer, local load analyzers
and dispatchers. At connection time, the local plan is empty and C uses the consistent hashing mech-
anism described above (section 3.2.5.1) to determine to which server subscriptions and publications
for a given topic T should be sent. If the local plan is out of date and as a result an incorrect server is
chosen, the server ensures that the subscription/publication reaches the correct server. Furthermore, it
informs the client about the correct publish/subscribe server(s) for topic T . Thus, over time, C updates
its plan P pCq with the correct topic/server assignments gradually as it becomes more aware of the
assignments of various topics.

Similarly, whenever the global plan changes, C is informed in this lazy manner. A consequence of
the local plan mechanism is that at any time P pCq only contains information about topics that the client
actually uses. Assuming that in large-scale settings, each client only interacts with a small subset of all
topics, this approach keeps the plan information at the client side as small as possible. Minimizing the
local plan size also enables the middleware to support multiple applications concurrently (in a gaming
context, that could be many independent instances of a multiplayer game). The exact mechanisms in
which client plans are updated over time and during reconfiguration are described in section 3.3.2.

3.3 Load Monitoring and Plan Generation

To perform load balancing and create new plans, Dynamoth must know the current load on all publish/-
subscribe servers. Moreover, it must estimate as precisely as possible the load distribution that will be
obtained after rebalancing occurs based on the current load. Our framework is able to accurately mon-
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itor and measure the load for every topic, on every publish/subscribe server, with minimal overhead,
without the need to alter the pub/sub server software (Redis in our case).

3.3.1 Load Monitoring: Local Load Analyzers

To enable load monitoring, each node that runs a publish/subscribe server also runs a local load an-

alyzer (LLA). The role of the LLA is to continuously gather extensive load metrics for every topic
managed by the publish/subscribe server. The recorded metrics for every time unit t (t is one second
in our experiments) include the number and list of publishers, the number of publications, the number
and list of subscribers, the number and size of sent messages, and the incoming and outgoing number
of bytes transmitted.

The LLA is notified when the publish/subscribe server receives new subscriptions and unsubscrip-
tions. This allows the LLA to discover new topics and keep track of the subscribers. In order to collect
all metrics, the LLA registers as an “observer” to every topic hosted onto the local publish/subscribe
server, and therefore receives a copy of every publication. The fact that the LLA runs locally on the
same machine as the publish/subscribe server greatly reduces communication overhead and does not
use any local bandwidth. Our empirical observations showed that: (1) running the LLA module had
very limited CPU overhead and (2) the outgoing bandwidth of the publish/subscribe servers got satu-
rated much more quickly than the CPU. This second observation can be explained by the fact that most
publications will be sent to many subscribers. Therefore, our rebalancing algorithm doesn’t take CPU
load and incoming bandwidth into account since through our experiments, they were not a limiting
factor, except for some specific cases where there is a huge amount of subscribers for a given topic and
a significant amount of publications. This can lead to high CPU usage and is handled by using topic
replication.

All LLAs send an aggregate update message at a predefined interval to the Load Balancer node.
This message contains all metrics for all topics for all time units ti since the transmission of the last up-
date message, as well as additional information such as the theoretical maximum outgoing bandwidth
supported by that server node, as well as the measured outgoing bandwidth on the network interface.
Since both the LLA and the load balancer are likely to be located in the same LAN/cloud, this period
update message will likely have very limited impact on the bandwidth.

For additional details regarding our implementation of the LLA component within Dynamoth, the
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reader is encouraged to refer to section 6.1.4.

3.3.2 Load Balancer: Generating a New Plan

Upon receiving the metrics from all Local Load Analyzers (LLAs) for every time unit t, the Dynamoth
load balancer (LB) first computes the load ratio for all publish/subscribe servers. The load ratioLRi for
a given server i is defined as the measured outgoing bandwidth Mi divided by the maximum outgoing
bandwidth supported by the server Bi (eq. 3.1).

LRi “
Mi

Bi

(3.1)

The LB then decides if a new plan should be generated or if the current plan should be kept. New
plans are generated only after at least twait time units have elapsed since the last plan generation to
make sure that most of the configuration overhead of the last plan change is completed before the next
one is triggered. A new plan is generated using the Dynamoth rebalancer module in a two-step process:
(1) topic-level rebalancing (subsection 3.3.2.1) and (2) system-level rebalancing (subsection 3.3.2.2).

3.3.2.1 Topic-level Rebalancing

In this step, the LB checks the number of publishers, subscribers and publications on each topic and
determines whether some topics could benefit from replication (all subscribers or all publishers). Al-
gorithm 3.2 outlines how the LB determines whether any given topic should use any of the replication
schemes. The first step involves computing the publication-to-subscribers ratio (Pratio) (line 1) and
checking whether this ratio is above a given threshold (line 3). We also check whether we have a min-
imum amount of publications before triggering replication (line 3), since replication makes sense in
cases where a given topic uses significant resources that cannot be managed by one publish/subscribe
server. If both conditions are true, then the all-subscribers replication scheme is used. The number of
servers Nservers that should be used is then computed (line 4), and all subscribers will connect to all
Nservers servers. A similar approach is used to determine if the all-publishers scheme should be en-
abled instead (lines 2;7-9) and decide on the number of servers. At this step, we ensure that we have
a minimum amount of subscribers to make sure that replication is relevant. If the conditions regarding
all-subscribers and all-publishers are not met, then replication is not used for this topic (or is canceled
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if it was active).

One corner case is the case where the amount of publications and subscribers are both very large
(not shown in our algorithm due to space constraints); our system will then use the all-subscribers
scheme since the all-publishers scheme causes publications to be sent to all publish/subscribe servers,
which is more costly.

Upon enabling a given replication scheme for a given topic, or if replication is already enabled
for this topic but the LB determines that additional servers should be used (Pratio or Sratio increases),
then the load balancer selects the least-loaded servers first from the pool of available servers not already
mapped to the topic. Similarly, if replication servers need to be freed (the LB determines that replication
is not needed anymore or that the number of servers can be reduced), then the busiest servers are freed
first.

begin
Pratio = #publications{#subscribers;
Sratio = #subscribers{#publications;
if Pratio > AllSubsthreshold and #publications ą Publicationthreshold then

Nservers = Pratio{AllSubsthreshold;
replicate(ALL_SUBSCRIBERS, Nservers);

end
else if Sratio > AllPubsthreshold and #subscribers ą Subscriberthreshold then

Nservers = Sratio{AllPubsthreshold;
replicate(ALL_PUBLISHERS, Nservers);

end
else

replicate(NO_REPLICATION);
end

end
Algorithm 3.2: Determining Whether Replication Should Be Used

3.3.2.2 System-level Rebalancing

In this step, the LB analyzes the load on each publish/subscribe server. In general, Dynamoth can
perform two types of load rebalancings: (1) a high-load rebalancing, which is needed when one or
more publish/subscribe servers are overloaded in order to bring the load down, and (2) a low-load
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rebalancing, which takes place in the case where one or more publish/subscribe servers are underloaded
in order to free servers that are not required anymore with the ultimate goal of shutting them down.
Because publish/subscribe servers are most likely deployed in the cloud, the LB aims at being efficient
regarding the number of servers that need to be used in order to save costs, while maintaining adequate
performance. The two next subsections explain our current system-level load balancing algorithms for
high-load and low-load rebalancing. In real commercial systems, more elaborate heuristics could be
used.

3.3.2.3 High-Load Rebalancing

If there is a publish/subscribe server Hi with a load ratio LRi that exceeds a given threshold LRhigh,
then a new high-load plan P ˚ must be generated so that P ˚ ensures that the load returns below a safe
threshold for all servers. If this is not possible, then one or more additional servers have to be allocated
from the cloud.

Algorithm 3.3 describes our heuristic for generating a plan to reduce the load on overloaded servers.
The algorithm repeats as long as there is at least one publish/subscribe server with an estimated load
ratio above LRhigh. The publish/subscribe server with the highest load ratio (Hmax with load ratio
LRmax) is selected. Then, as long as the estimated load ratio LRmax remains above a certain threshold
LRsafe, we do the following: (1) obtain the publish/subscribe server with the lowest load ratio (Hmin

with load ratio LRmin); (2) obtain the busiest topic T out
max on Hmax; (3) migrate this topic from Hmax

to Hmin in the new plan P ˚, and (4) estimate the load ratio LRmax (on Hmax) that we would get if P ˚
was applied. Of course, the estimated load on the server that receives the topic will be recalculated as
well to make sure that we do not overload that server.

3.3.2.4 Low-Load Rebalancing

If the global load ratio (averaged LRi for all publish/subscribe servers i) is below a given threshold,
then one or more servers can be freed. This operation is less critical for performance reasons, but nev-
ertheless essential for cost saving purposes. Topics from the lowest loaded server are slowly migrated
to the other servers as long as the load on the other servers stays below a given limit. When a server
has no more topics, it is deallocated. If at any point the global load ratio increases such that it becomes
higher than the low-load threshold, then the low-load rebalancing will be interrupted (and, if needed, a
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begin
P* = P.copy();
while true do

(Hmax,LRmax) = max(LRi @ Hi);
if LRmax ă LRhigh then

return P*;
end
LRmax “ LRmax;
while LRmax ě LRsafe do

(Hmin,LRmin) = min(LRi @ Hi);
T out
max = getBusiestTopic(Hmax);

P*.migrate(T out
max, Hmax Ñ Hmin);

LRmax “ estimateLRpP ˚q;
end

end
end

Algorithm 3.3: Generating a New High-Load Plan

high-load rebalancing can be triggered). The detailed low-load rebalancing algorithm, similar in spirit
to the high-load rebalancing algorithm, is not described in details in this section. It is nevertheless fully
implemented in our Dynamoth implementation.

For all algorithms, the values of the various threshold parameters were determined empirically
based on the capabilities of the machines at our disposal. Of course, with different hardware, those
values would most likely need to be adjusted. In future work, one could explore the idea of having a
mechanism to automatically set and update thresholds based on real-time conditions.

3.4 Reconfiguration

This section describes the lazy propagation mechanism used by Dynamoth to propagate plan changes
to relevant clients of the pub/sub system.
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3.4.1 Overview

Upon determining that a new global plan P ˚ should be applied, all stakeholders (local load analyzer
and dispatcher components, as well as subscribers and publishers) need to be informed. However,
sending a new global plan to all clients at reconfiguration time would create a huge bottleneck and
message overhead. Furthermore, global plans contain information about all topics, while individual
clients are likely only interested in a few of these topics and therefore should only receive partial plan
information on a need-to-know basis. Thus, we use a lazy scheme, as introduced in sections 3.2.5.1
and 3.2.5.2 where, at connection time, clients use consistent hashing to determine publish/subscribe
servers and get to know the true server that should be used for a given topic only when they actually
send their first message for this topic. Similarly at reconfiguration time, their partial plans are only
updated on a need-to-know basis using a lazy propagation technique.

For this to work and to not loose any subscriptions and publications that are sent to the wrong pub-
lish/subscribe servers, the servers must be able to handle wrongly addressed messages. The following
subsections give an overview of Dynamoth’s lazy reconfiguration process. More details are given at
the next section (3.4.2).

3.4.1.1 Initialization

Whenever a client does not have any server information about a topic, it sends the publication/sub-
scription request to the server determined by consistent hashing. If this is not the correct server, the
server sends a message back to the client informing it about the correct server. The client updates its
local plan and then sends the message to the correct server.

3.4.1.2 Subscriber Change

Whenever a plan change moves a topic T from server H0 to server H1, all subscribers need to be
informed and move their subscriptions accordingly from H0 to H1. We don’t do this immediately
for all topics, because this could lead to a spike of unsubscriptions and subscriptions at the time of
reconfiguration, possibly causing performance bottlenecks. In order to stagger the reconfiguration of
topics, we notify subscribers of the switch of topic T together with the first publication on T after the
plan changes.
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3.4.1.3 Publishing on an Old Server

As this is the case with subscribers, publishers are also not informed immediately of a plan change. In
fact, in our system, there is actually no central authority that would know the content of the local plans
of the clients, as they all are maintained individually by the clients themselves. Instead, when a topic T
has moved from server H0 to H1, and H0 receives a publication message on T , it informs the publisher
about the change, so it can update its plan and send its next message to the correct server. At that time,
bothH0 andH1 might have subscribers for T , as some but not all of the subscribers might already have
updated their subscriptions. Therefore, H0 forwards the message to all subscribers of T still connected
to it, and also sends the publication to H1 so that it can deliver the message to all subscribers of T
already connected to H1, in a timely fashion (which is more efficient then denying the publication and
asking the publisher to resubmit to H1).

3.4.1.4 Publishing on the New Server

Finally, a publisher might already know the new location of T and send a publication for T toH1 while
there are still some subscribers connected to H0. Therefore, H1 forwards the publication not only to
its local subscribers but also to H0 so that it can disseminate it to the subscribers still connected to H0.
Such forwarding needs to occur until H0 does not have any subscribers anymore, which is after the
expiration of a timer (discussed in section 3.4.2.5).

For replicated topics, reconfiguration is more complicated as there are multiple publish/subscribe
servers that are in charge of publications and subscriptions for a given topic. However, in principle, it
follows the same line of reasoning as described above. For details, we refer the reader to Franz-Philippe
Garcia’s technical report [52].

3.4.2 Reconfiguration Details

A challenge in our system is that we rely on ready-to-use publish/subscribe servers that we do not want
to alter. Thus, the forwarding functionality is implemented in the dispatchers that are collocated on the
publish/subscribe server nodes as described in the following subsection and illustrated in figure 3.3.
This section and the subsections give additional details and illustrate the reconfiguration process.
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(a) Incorrect Server H0 (b) Correct Server H1

Figure 3.3: Handling Publications during Reconfiguration

3.4.2.1 Reconfiguration Setup

Each dispatcher has connections to all other publish/subscribe servers in order to be able to forward
messages. Whenever a new global plan P ˚ is created, the load balancer sends it reliably to all dis-
patchers. Upon receiving a new plan P ˚ such that server H0 was responsible for topic T in the old
plan and server H1 in the new plan P ˚, the dispatchers of both H0 and H1 subscribe locally to topic T
to receive all publications. Furthermore, the dispatchers intercept all subscription and unsubscription
requests submitted to their local publish/subscribe servers.

3.4.2.2 Incorrect Publish/Subscribe Server

Figure 3.3a illustrates by example what happens if a publication message M on topic T goes to an
incorrect publish/subscribe server H0 (step 1). The publication is first sent to the subscribers still using
H0 for T (C2 in our example). As the dispatcher D0 is also subscribed to T , it also receives the
publication. If this was the first publication on T after the new plan P ˚ was received, D0 publishes
a <switch to H1> message to T on H0 in order to ask all subscribers to switch to H1. H0 then forwards
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this switch message to all subscribers, who then update their local plan and transfer their subscription
to H1 (steps 6, 7 and 8). D0 also publishes the original publication to T on the new server (H1)
which delivers it to its own subscribers, if any (steps 3, 4 and 5). Note that some steps might execute
concurrently (steps 2 and 3, or steps 4 and 6 for example).

3.4.2.3 Correct Publish/Subscribe Server

The case where a publicationM on T is sent to the correct publish/subscribe serverH1 is much simpler
(step 1 in figure 3.3b). H1 delivers it to local subscriber C2 (step 2). D1 also receives M , and publishes
M to T on the old server H0 (steps 3 and 4). Finally, H0 delivers M to C1.

3.4.2.4 Client Subscribing and Moving a Subscription

If a client has outdated plan information for a topic T (using consistent hashing or having an outdated
plan), then this client might send a subscription request for T to an incorrect server H0. The dispatcher
for H0 then notifies the client that it subscribed to T on an incorrect server. Upon receiving such a
message, the client immediately updates its local plan, subscribes to T on H1 and unsubscribes from T

on H0. The same process is used when a client is asked to move an existing subscription: it subscribes
to the topic on the new server, and then unsubscribes from the same topic on the old one (so that no
publications are lost).

3.4.2.5 Duration of Forwarding and Dispatcher Subscriptions

An important question is how long dispatchers should subscribe to topics and forward messages. The
dispatcher onH1 must forward messages it receives for T toH0 as long as there are still clients that are
subscribed to H0 instead of H1. Thus, in order to avoid unnecessary forwarding, the dispatcher on H0

notifies the dispatcher onH1 as soon as there are no subscribers for T remaining onH0. The dispatcher
on H1 then stops forwarding messages.

The dispatcher on H0 forwards to H1 messages for T it receives from publishers that don’t know
yet about the switch. In principle, it could simply send to the publisher the information about the new
server H1, and the publisher could then republish the message on H1. However, for performance and
cost reasons, H0 forwards the message directly to H1, because this communication happens inside the
cloud. Over time, there will be less and less publishers that publish on the wrong publish/subscribe
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server (H0). To avoid requiring that the dispatcher on H0 must be subscribed to T forever, we employ
a timeout mechanism.

Each client C configures a timer for each topic T in its local plan. The timer is reset whenever
C sends or receives a publication on topic T , or when the server for T changes in C’s local plan.
When the timer expires and the client is not subscribed to T , then the client removes T ’s entry from
the plan. Should C later try to subscribe to T or send a publication to T , it connects to the server
that is determined through consistent hashing (just like at the initialization phase, discussed in sections
3.2.5.1 and 3.4.1.1). The dispatcher on H0 uses the same timer. It sets the timer for T when a new plan
moves T from H0 to another server H1. It stops receiving publications on T and forwarding messages
to H1 when the timer expires, because at this time no client will have the outdated information for T
anymore.

The dispatcher of the default server HT
d , i.e., the server for a topic T determined by consistent

hashing, is always subscribed locally to T . Thus, it can determine when publications for T are sent
erroneously toHT

d and let the senders know the real server that is responsible for T . With this, whenever
a client sends a message to the wrong server (either a server based on an outdated plan or the server
determined through consistent hashing), the dispatcher on that server receives the message and informs
the client about the reconfiguration.

3.4.2.6 Ordering and Delivery Guarantees during Reconfiguration

During reconfiguration, using TCP is not enough by itself to guarantee FIFO ordering and exactly
once delivery. Assume a topic T is moved from server H0 to server H1. Publisher P still sends its
first message M1 after reconfiguration to H0. H0 forwards it to H1, but also tells P about the change.
Therefore, P sends its next two messages M2 and M3 to the new server H1, which delivers them to its
local subscribers, but also forwards them toH0 for subscribers that have not yet migrated. It can happen
that a subscriber S subscribes to H1 just after H1 has sent out M2, but before it has sent out M3. Note
that S first subscribes to H1 and only when this is confirmed it will unsubscribe from H0. Thus, S will
receive M2 from H0 and M3 from H1, that is, it will receive all messages. But as these two messages
arrive from two different servers, it can happen that M3 arrives before M2. It might also happen that
both H0 and H1 send M3 to S if S doesn’t unsubscribe quickly enough. We have to guarantee that both
messages are delivered only once to the application layer at S, and in the correct order.
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Therefore, as mentioned before, the underlying client library automatically adds sequence num-
bers to the publisher’s messages. If messages arrive at the subscriber in an incorrect order as described
above, our library delays their delivery to the application until missing messages are received. If mes-
sages arrive twice, duplicates are discarded; thus, we guarantee that FIFO ordering is maintained for
all messages sent by any given publisher. Note that such out of order or double reception can only
occur during reconfiguration. Thus, adding sequence numbers is only needed during reconfiguration
(e.g., from the time the publisher gets notified that it should send to a new server until the timer that
we described in the previous section has expired).

In addition to being used as part of the reconfiguration process, the duplicate message elimination
strategy is also used as part of our failure recovery process, discussed in the next section. While we
have implemented elimination of duplicates, we have not fully implemented the reordering of messages
during reconfiguration so far, due to the added complexity. As we are in the process of open-sourcing
Dynamoth, we would certainly welcome patches from the community in this regard.

3.5 Availability

Dynamoth is designed to provide availability by remaining fully functional in the event of server fail-
ures. To reach that goal, the various Dynamoth components, both server- and client-based, are able to
detect server failures and take appropriate reconfiguration measures. The failure-handling mechanism
is completely transparent to the users of the Dynamoth library. Note that we only consider server fail-
ures, as client failures are out of the control of the publish/subscribe service. Subscribers that fail are
simply excluded and do not receive any messages that are delivered during their downtime.

Guaranteeing reliability and/or FIFO delivery when failures occur make failover more expen-
sive, and can slow down message delivery significantly. In some contexts, in particular for latency-
constrained applications, such an additional delay might not be acceptable. For instance, in gaming
applications, a published state update often replaces a previous state update. Thus, a best effort deliv-
ery of publications might be sufficient. Therefore, the Dynamoth client library allows one to specify,
for any topic T , whether or not delivery and/or FIFO needs to be guaranteed during failure handling
periods. In particular, we support three options: (i) reliable and FIFO delivery, (ii) reliable delivery but
no ordering guarantee, (iii) best effort.
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3.5.1 Failure Assumptions

Our failure handling components make several assumptions in regard to crash and asynchrony behav-
ior.

3.5.1.1 Fault Model

Our system can handle server failures, but assumes no network failures (no message loss, no network
partitions). We assume that servers fail by crashing, meaning that all processes on the server machine
fail simultaneously, i.e, the publish/subscribe middleware (Redis) and all related components (local
load analyzer, dispatcher). We can handle simultaneous server failures, and in principle, as long as one
server is running, the service is available.

3.5.1.2 System Load

During recovery, the load of failing servers is transferred to non-failed servers. Therefore, Dynamoth
assumes that the supplemental load can temporarily be handled properly by the remaining servers,
which is a necessary condition to bring the system back to a fully functional state. After recovery, the
Dynamoth load balancer is invoked and can trigger reconfiguration steps including the spawning of
additional cloud servers, if needed.

3.5.1.3 Bounded Message Delivery Time

We follow the traditional failure detection approach and suspect a server to have failed if we do not
receive an expected message within a certain time interval. That is, we assume an upper bound on
the delay of any message. In particular, we assume that any message sent by any publisher P to a
publication server H , or from a publication server H to any subscriber S, is delivered and processed
within an interval of Tsend (we assume the processing time to be a small, constant value). We further
assume a bounded communication time Tserver between servers in the cloud. Naturally, Tserver < Tsend,
since all servers are co-located in the same cloud. As the Internet is inherently asynchronous, our
failure detection modules on the publisher and subscriber clients might wrongly suspect a server to
have failed while it is operational. However, our system can easily handle such wrong suspicions by
clients.
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3.5.2 Overview

In the following subsections, we first describe the case of a single server failing and no topic replication.
Reconfiguration when multiple servers fail and reconfiguration for replicated topics are described in
sections 3.5.7 and 3.5.8. LetHf be the failing server. The failure handling mechanism can be decoupled
in three main steps: the failure detection phase, the resubscription phase and the replay phase, followed
by an optional load balancing phase.

3.5.2.1 Failure Detection Phase

In the failure detection phase, all involved nodes detect the failure. We assume that servers detect the
failure earlier than clients, and all agree whether it is really a failure, or Hf is simply being slow. The
exact failure detection process is explained in section 3.5.3.

3.5.2.2 Resubscription Phase

During the resubscription phase, all subscriptions are reestablished towards alternate servers. The de-
fault alternate server for a topic is simply the server that is determined through consistent hashing, i.e.,
the same server that is responsible for a topic by default at system start (section 3.2.5.1), simplifying
the reconfiguration process. The resubscription process is described in section 3.5.4.

3.5.2.3 Replay Phase

Finally, in the replay phase, missed publications, which are messages that were in transit when Hf

failed, are resent, with or without ordering, in order to fulfill the delivery and ordering guarantees. In
our model, the individual publishers are the ones who resend messages. We have decided to not use
the traditional mechanisms of persistence or 3-way replication at the server side to avoid message loss
as both have a very high overhead in terms of execution costs and execution time; which we consider
prohibitive for latency-constrained applications. Instead, for topics where reliability is needed in the
case of failures, the Dynamoth library at the publisher buffers recently sent messages and resends them
should a server crash. This replay occurs in the order messages were originally sent to guarantee FIFO,
or, if the publisher does not care about order, messages are resent in a more efficient way. The message
replaying process is discussed in sections 3.5.5 and 3.5.6.
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3.5.2.4 Load Balancing

Once the failover is completed, i.e., all topics that were originally assigned to the failed server have
been reassigned and messages have been replayed, the new configuration is likely to not be completely
balanced and/or might be close to an overload situation. After reconfiguration, the load balancer, which
is suspended during the failure recovery process, is restarted. Then, if needed, the load balancer will
generate a more optimal configuration taking into consideration the new set of available servers and the
current assignation of topics, following its usual process, in order to fine-tune the allocation of topics
to servers, and if needed, introduce new servers.

3.5.3 Detecting Server Failure within Bounded Time

Although TCP connections are capable of detecting failures, the standard TCP timeout interval is far
too large to be useful in the context of Dynamoth. This section describes how Dynamoth detects all
server failures within a time interval Tdetect.

3.5.3.1 Server Failure Detection for Subscribers

To enable subscribers to detect server failures, Dynamoth servers ensure that they communicate with
each subscriber at least once within each time interval Tdetect. Let S be a subscriber subscribing to one
or more topics on serverH , and let THpmLq be the time that S received the last publication from server
H (across any topic). Let T S

current be the current time at S. Then TH
elapsed “ T S

current ´ THpmLq is the
amount of time that has elapsed since the last message was received from H . If TH

elapsed exceeds Tdetect,
then subscribers suspects H to have failed.

To ensure that TH
elapsed does not exceed Tdetect for servers that are functioning correctly, the LLA at

H , that already monitors communication with each client, injects artificial “keep-alive” messages when
needed. Let TH

current be the current time at server H and let TSpmLq be the time the last publication was
sent to subscriber S by server H (across any topic). As defined in section 3.5.1, Tsend is the estimated
maximum bound on the time needed to deliver and process a message. As TH

current´TSpmLq approaches
Tdetect´Tsend, the LLA issues a keep-alive message to S, so that it is received before the Tdetect timeout
is reached on S. Thus, keep-alive messages are only needed in the case where no other publication was
sent to S within the Tdetect interval.
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3.5.3.2 Server Failure Detection for Publishers

Let P be a publisher publishing to at least one topic on H . If P is also a subscriber to any topic
managed by H , then P benefits from the failure-handling mechanism for subscribers described above.
Since it is essential for publication playback that all publishers detect server failures in time, our client
software simply subscribes to a dummy “keep-alive” topic on H in the case where P is not subscribed
to any topic on H . If P eventually subscribes to a topic on H , then our client software simply drops
the subscription to the “keep-alive” topic.

3.5.3.3 Server Failure Detection by other Servers

Within the cloud, we install a standard failure detection mechanism with agreement. Thus, if any server
suspects another server Hf to have failed, it runs an agreement protocol with the other servers so that
all servers take the same decision to either decide that Hf has failed or is still functional. We assume
that in-cloud failure detection is much faster than any publisher or subscriber suspecting a failure.

3.5.4 Reestablishing Subscriptions to the Default Servers

Upon failure detection of server Hf by any given subscriber S, S reestablishes all subscriptions that
it had to all topics managed by Hf towards alternate servers. Just as when a client connects to the
system the first time, i.e., when it still has no information about who is serving a particular topic T , S
simply sends its resubscription request for T to the default server Hd determined by consistent hashing
as described in section 3.2.5. If a client wrongly suspects a server to have crashed, e.g., because of
network partitioning, then the default server Hd informs S by rejecting the resubscription request.

We define Tresub as an upper bound on the amount of time that all subscribers need to reestablish all
of their subscriptions. Thus, assuming the actual time of the failure of server Hf is tf , then at the latest
at time ts (equation 3.2) it is guaranteed that all subscribers will have reestablished all subscriptions to
all topics Hf was responsible for, to the default servers of these topics.

ts “ tf ` Tdetect ` Tresub (3.2)
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3.5.5 Best Effort Delivery

In the best effort approach, messages sent after the failure but before its detection by the publisher,
are lost. A publisher, as it is also a subscriber (to at least the keep-alive topic), detects the failure
within the detection window Tdetect after the actual time of the failure tf . As the actual detection time
varies from client to client, a publisher/subscriber on topic T might detect a failure earlier than another
subscriber. Nevertheless, if delivery guarantees are not important for a given topic T , the publisher can
immediately start sending new publications towards the alternate server Hd. However, if it is required
that at least the new messages sent on topic T should be transmitted to all subscribers, then the publisher
has to wait until all subscribers have resubscribed to Hd, at time ts (equation 3.2). In the most extreme
case, the publisher has detected the crash basically at the time it occurred (begin of the detection
window) and a subscriber at the end. Thus, a publisher should wait the time of Tdetect ` Tresub after it
has detected the failure by itself before starting to send new publications to Hd. For this purpose, the
library at the publisher maintains for each topic a failover queue Qf to which is appends all messages
submitted by the publisher. The messages are then sent in FIFO order Tdetect ` Tresub time units after
the detection of the failure.

Note that the best effort approach guarantees FIFO delivery. All messages received before the fail-
ure are received in sending order as discussed in previous sections. Then, the set of messages in tran-
sition during failure detection and failover are lost. When a subscriber has successfully resubscribed
and receives messages again, these messages are again received in the order they were sent. The next
section (3.5.6) discusses the case where reliable delivery is enabled for topic T ; that is, all messages
including those in transition during failure detection and failover should be correctly delivered.

3.5.6 Retransmitting Missed Publications

In order to retransmit missed messages for topics for which reliable delivery is requested, the client
library at the publisher appends during normal processing each message sent by the publisher to a local
buffer queue Qr for a certain amount of time, which we call the playback window. When the publisher
detects a failure, the messages in Qr are resent to the alternate server Hd (after the resubscription
phase).
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3.5.6.1 Playback Window

An essential question is how long publishers should retain publications for playback in order to guaran-
tee that no publications are lost. Assuming tf to be the time of failure, messages that were sent before
time tf´2Tsend are guaranteed to have arrived at the subscribers (Tsend time units to arrive at the server
and another Tsend time units to be sent by the server to the subscribers; we assume that a message is
sent in parallel to all subscribers). A publisher detects a failure the latest at tf ` Tdetect. Thus, Qr must
hold all messages sent within the last Tdetect ` 2Tsend time units. Messages sent before this playback
window can be removed from the queue.

3.5.6.2 Replaying Past Publications

A publisher P starts resending messages in Qr when it is certain that all subscribers have reestablished
their subscriptions. As discussed above, this is guaranteed to have happened Tdetect ` Tresub time units
after P detected the failure itself. As it is possible that some subscribers have already received some of
these messages before the failure, the library at the subscribers detect such duplicate messages in the
same way duplicate messages were detected during reconfiguration (see section 3.4.2.6).

If FIFO order is required even during failure recovery; that is, if it is required that all messages are
sent in FIFO order, including messages that have to be replayed, then P resends messages in Qr in the
order they were appended (ordered playback). In contrast, if no ordering is required, then we resend
the messages in reverse order, that is, the message that was last appended to Qr before the failure was
detected is the first one to be sent. This is done to minimize delivery times for recent publications, since
fresher publications are likely to be more relevant. In addition, it is more likely that older publications
(at the beginning of the queue) have already been delivered at the subscribers.

Note that we use a form of throttling to control replay. In particular, after each replay of a message,
we introduce a delay of Tdelay time units before resending the next message. This delay serves two
purposes: 1) ensuring that alternate servers do not collapse due to the additional load of the replaying
process and 2) ensuring that publications on other topics (handled by the same servers) do not suffer
performance degradations.
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3.5.6.3 Handling New Publications

Another important question is how to handle the messages that are submitted for publication on the
publisher after failure detection. We already described that these messages are appended to Qf (not
to be confused with Qr) and should only be sent after it is ensured that all subscribers have properly
reestablished their subscriptions. Furthermore, in the case where reliable and FIFO order are required,
we first have to resend all messages fromQr (i.e., the potentially missed publications), and only then we
can process the messages queued in Qf . Queue processing (Qr then Qf ) takes place until all messages
have been sent. In other terms, new messages arriving while processing either Qr or Qf are appended
to Qf , until Qf is empty, if FIFO is required. As a result, new publications are queued and eventually
transmitted in the correct order after all past publications have been replayed to the alternate server.

In contrast, if ordering is not required, we can perform the sending of messages in Qf concurrently
with resending messages in Qr (concurrent playback). Also messages that are submitted concurrently
to this replay are sent out immediately.

In both cases, when the queues are empty, that is, when we reach a point when all past and queued
new publications have been sent, normal processing of publications is restored so that future publica-
tions are sent normally.

Preserving FIFO ordering has the drawback that all new publications are delayed until all past
publications have been (re)transmitted. In the case of concurrent playback, because new publications
are sent concurrently to the playback of old publications, they do not suffer from additional delays.

3.5.7 Failing Servers while Reconfiguring

For simplicity, in the previous sections, we described the case with one failing server. At a high level,
handling multiple failures, where a given failure happens prior to the completion of a failure recovery
process, consists of applying our failure recovery mechanism recursively. This section briefly outlines
how Dynamoth is able to handle such cascading failure scenarios.

Assume one of the alternate servers Hd crashes while the failover of Hf has not yet completed.
Subscribers that were still in process of resubscribing to Hd will experience a timeout or error message
when trying to connect to Hd. Subscribers that had already completed their subscription process will
detect the new failure at most Tdetect time units after the failure ofHd occurs. They simply have to find a
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further alternate serverHd1 , and reconnect to that server instead. This second alternate server is selected
by an extension of our consistent hashing mechanism, which allows for generating a deterministic
sequence of alternate servers. Assuming that the non-failed servers can support the additional load of
the failed servers, considering N servers, we support Nf “ N ´ 1 failing servers; thus, for any server
Hf , we can generate a sequence of Nf alternate servers.

As long as there is no message replay, the reconnection of publishers follows the same logic. If
reliable delivery is required for topic T , then we have to make sure that all messages are delivered.
What has to be done depends how far a publisher P got in replaying messages before the failure of
Hd. To not loose any messages, the replay mechanism simply has to use the same mechanism that is
deployed during normal processing. We create a temporary queue Qf 1 . All messages (re-)sent from
Qr and Qf to the alternate server Hd are appended to Qf 1 and remain there for a time period of
Tdetect ` 2Tsend. After that time period we know that Hd has sent these messages to the subscribers.
Should the publisher complete the replay (Qr and Qf are empty) before the failure of Hd, Qf 1 simply
becomes the new Qf , and from the view point of P, the crashes ofHf and Hd are consecutive and not
concurrent. Should Qr or Qf not yet be empty when P detects the failure of Hd, then the remaining
messages are removed and appended to Qf 1 , then Qf 1 becomes the new Qf and the replay to Hd1 is
started upon waiting Tdetect ` Tresub time units.

That is, replayed publications and new publications during the replay are treated just as publications
during normal processing. They are kept at the publisher as long as it is not guaranteed that the alternate
server has sent them to the subscribers. Should the alternate server fail they will be replayed to the
alternate server of the alternate server. Clearly, this process can be iteratively repeated for cascading
failures.

While cascading failures lead to increased, yet temporary congestions in topics affected by the
failing servers, the playback mechanism guarantees that all potentially missed publications are nev-
ertheless correctly received by all subscribers, assuming that the subscribers and publishers remain
connected to the Dynamoth system.

We would like to note that if a publisher fails during the replay mechanism, it might happen that
some subscribers have received a message (before the server failure) while others have not (as the
publisher failed before resending the message to the alternate server). This inconsistency can only
occur if a publication server and a publisher fail shortly one after the other.
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3.5.8 Reconfiguration with Replication

We previously described the reconfiguration process in the context of non-replicated topics. For repli-
cated topics (All-Publishers and All-Subscribers), the process is altered as follows. Assuming topic
T is replicated to servers H “tH1, H2, . . . , Hf , . . . , Hnu; if Hf fails, then clients detect it according
to the process described in section 3.5.3. Then, instead of finding an alternate server for Hf , Hf is
simply removed from the list of replicated servers. Specific steps for the two replication schemes are
as follows:

3.5.8.1 All-Subscribers Replication

Subscribers do not need to do anything beside remembering that Hf has become unavailable (and
that the subscription to T on Hf is no longer valid). All publishers who had chosen Hf to be the
server to which they sent their messages randomly select one of the remaining servers for T and
republish potentially missed publications according to the procedure described previously. Note that
they do not need to wait for subscribers to resubscribe as all subscribers are already subscribed to all
remaining servers in H. In that context, all-subscribers replication has the added benefit of providing
extra redundancy, which can shorten recovery time.

3.5.8.2 All-Publishers Replication

All subscribers that were using Hf randomly select one of the other remaining servers for T to resub-
scribe. Publishers register the failure of Hf . If replay is required, they replay to all remaining servers
in the same way as done for the non-replicated case.

3.6 Implementation and Experimental Setup

3.6.1 Implementation

Our Dynamoth implementation is highly modular and consists of over 150 Java classes and over 15,000
lines of code. It is described in more details in section 6.1. For the purpose of this chapter, all Dynamoth
components and algorithms were implemented as described. All inter-component communications are
done using the publish/subscribe primitives offered by the Dynamoth API. The dispatcher and local
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load analyzer modules reuse the publish/subscribe interface, and standard Redis instances are used as
the publish/subscribe servers. They are independent and do not communicate with each other. Because
of this, any individual Redis instance can be replaced with any other publish/subscribe middleware as
long as it support the basic publish/subscribe primitives.

As application we use a multiplayer online game (MOG) application. Mammoth [70] is a game
engine for MOGs that was developed at McGill University as a testing and research framework. Re-
searchers are able to use the system to conduct all kinds of experiments related to MOG games in
a realistic environment. Mammoth has a very modular architecture that allows easy replacement of
components. One such component is the network infrastructure, which handles the exchange of all
messages between all nodes. Mammoth requires the network engine to provide a topic-based publish/-
subscribe API as messages to updated players, messages to send replicas to clients and general broad-
cast messages by the server are sent using the publish/subscribe paradigm. Thus, we used Dynamoth as
the network engine for Mammoth. For our experiments, we used a specific sub-game developed within
Mammoth, namely RGame, in which players are controlled by a simple AI that repeatedly chooses
a random point on the map, moves the player towards that point and then takes a short break. The
game world is split into a set of square tiles. Players subscribe to the tile in which they are located
in, and publish their own state updates on the tile. Thus, all players receive update messages from all
other players in the same tile. As players continuously move around, this application generates many
subscriptions and unsubscriptions to tiles, and update position publications on these same tiles.

3.6.2 Experimental Setup

Large-scale scalability and elasticity experiments were conducted on 80 machines of the labs of the
School of Computer Science of the McGill University over which we distributed client and server
nodes. Part of our decision was motivated by the bandwidth costs that would have been incurred if
many large-scale experiments were run in a public cloud.

While each publish/subscribe server node received exclusive access to one of the lab machines,
clients had to share machines in order to provide scalability results. All lab machines have dual or
quad-core processors and at least 4 GB of RAM. Both client and server nodes were run in the same
LAN. In order to emulate a typical cloud setup, where the publish/subscribe server nodes would run in
the cloud connected by a LAN and the clients access the servers over a WAN, we adjusted our latency
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measurements using the King dataset [57] (a study that gathered millions of latency measurements
between arbitrary DNS servers). We filtered the dataset to keep only measurements from North Amer-
ica. For each inbound publication message, we do the following: (1) if the publication comes from
an infrastructure node1 and goes to a client node, then we sample one value from the dataset; (2) if
the publication comes from a client node and is received by an infrastructure node, then we sample
one value and (3) if the publication comes from a client node and is received by another client node,
then we sample two values (round-trip). Each message received by the Redis middleware is put in a
queue and is delivered to the application layer only after a timer corresponding to the sampled latency
value(s) expires. Our experiments revealed that this delaying mechanism produced latency measure-
ments comparable to what we could expect from running our infrastructure servers in the cloud.

On the other hand, availability experiments were run in a later stage in a real cloud setting. For
these experiments, we used the Amazon EC2 cloud, with up to 20 virtual machines located in the
us-east-1 (Virginia) region. The King dataset was also used in a similar fashion to emulate proper
client-to-cloud latencies, since both clients and publish/subscribe servers were run in the same cloud
for convenience and cost-saving purposes.

3.7 Experiments

3.7.1 Topic-level Scalability

We first assessed the scalability of the topic-level (micro) load-balancing capabilities of Dynamoth by
running experiments with both replication schemes proposed by Dynamoth: “all publishers” and “all
subscribers”. For that, we ran a set of micro-benchmarks that focus on specific overloaded topics.

3.7.1.1 All Publishers

In this experiment, we connected up to 800 subscribers to a given topic T . In our setup, we ran 10
subscribers per machine. One publisher client sends 10 publication per second on topic T . This ex-
periment was first attempted with replication disabled (only one publish/subscribe server was handling
topic T ) and then with replication enabled over 3 servers (3 publish/subscribe servers were in charge
of server T ). Under the “all publishers” model and under the replicated configuration, the publisher

1A node that would be usually located in the cloud: Local Load Analyzer, Dispatcher or Load Balancer
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Figure 3.4: Replication Experiments
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was sending its publications to all 3 servers and every subscriber was randomly subscribing to T on
one of the 3 servers. Figure 3.4a details response time results.

We observe that with 100 subscribers, both the non-replicated and the replicated configurations
yield similar response times. Then, as the number of subscribers grows, the response time for the non-
replicated configuration continuously increases. This is explained by the fact that sending the message
to a large volume of subscribers takes more time if it is done only by one server. Finally, above 500
subscribers, the CPU is not able to process the flow of publications anymore and the performance
decreases exponentially. Using 3-server replication, the response times remain very low. This is due to
the fact that each server only needs to process and forward publications to a 1

3
of the subscribers. Thus,

our all-publishers replication mechanism allows our system to scale properly in situations where there
would be many subscribers on a given topic.

3.7.1.2 All Subscribers

We attempted to connect up to 800 publishers sending 10 publications per second each on a given topic
T , and only one subscriber. This experiment was ran with replication disabled and with replication
enabled with 3 servers under the “all subscribers” model. Under this configuration, the subscriber was
subscribing to T on all 3 servers and all publishers were publishing randomly to one of the 3 servers.
Figure 3.4b details the response time results.

We observed that under the non-replicated configuration, we are able to support up to 200 pub-
lishers. After that, delivery of messages fails because the output buffer for the subscriber gets too
full due to the high volume of publications. Under the replicated configuration, we are able to safely
support nearly up to 600 publishers because each server processes only 1

3
of the publications. This

demonstrates that our all-subscribers replication mechanism allows our middleware to scale to support
scenarios where there are large amounts of publications.

3.7.2 Scalability

This experiment aims at evaluating the scalability of our Dynamoth architecture and the effectiveness
of our load balancer in the context of a large-scale latency-constrained game application. At the start
of the experiment, some 120 players are active in the game and over time more and more players
join the game; therefore increasing the load in the system. Overall, we attempted to connect up to
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Figure 3.6: Total Outgoing Messages and Number of Publish/Subscribe Servers
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Figure 3.7: Average Response Time
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1200 clients; once joined, each player sends 3 state updates (publications) per second. Up to 8 Redis
publish/subscribe servers were available. We ran this experiment with our Dynamoth load balancer and
we ran the same experiment again using only consistent hashing, the standard load balancing technique
described previously in section 2.3.3.2.

Figures 3.5, 3.6 and 3.7 detail our results for experiment 2. In all figures, the time is shown on the
X-axis (in seconds). Figure 3.5 plots the number of players active in the system over time showing how
the players slowly join the game. Figure 3.6 plots the total number of messages transmitted per sec-
ond throughout the whole system over time, as well as the number of Redis publish/subscribe servers
(between 1 and 8) that were currently active, for both the Dynamoth and consistent hashing experi-
ments. Finally, figure 3.7 plots the average response time experienced by clients over time (the time
that elapses between the client publishing a state update and receiving the corresponding notification
back from the publish/subscribe server). The diamonds and circles indicate the times where the load
balancer triggered a reconfiguration respectively for the Dynamoth and consistent hashing approaches.
In the context of a game, the playing quality will be optimal if the average response time remains below
150ms.

By using multiple Redis publish/subscribe servers, Dynamoth scales up to almost 1000 partici-
pants. We observe small spikes in the average response time around the time when new server is added
and rebalancing takes place, but those bursts are only of short duration and the average response time is
otherwise always maintained at an acceptable threshold (around 75ms). The bursts happen because the
application of the new plan occurs at a time the servers are already overloaded, further increasing the
load for a short amount of time, leading to an additional delivery delay for some messages. However,
our lazy plan propagation approach keeps this impact of plan changes very low, as explained in section
3.4. The results further show that our load balancer is conservative and first reuses the pool of active
servers before deciding to spawn new servers. This keeps cloud utilization costs low. Furthermore,
even after the 8th and final server is deployed, the load balancer is still able to maintain an accept-
able performance for a while just by applying incremental plan changes (without deploying additional
servers).

With consistent hashing, only up to 625 players can be supported before performance deteriorates.
This is due to the fact that consistent hashing doesn’t take individual server loads into account when a
rebalancing occurs. Servers shed 1

N
of their load to a newly deployed server, irrespective of their current
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load. As a result, highly loaded servers do not loose significant load and tend to become overloaded
again soon. Furthermore, this technique has to spawn a new server every time a rebalancing occurs,
which is not cost efficient in a cloud setting.

For that same experiment with Dynamoth, figure 3.8 plots the average load ratio (equation 3.1) of
all active publish/subscribe servers, the load ratio of the busiest server as well as the number of Redis
servers and the time points when a rebalancing occurred. A load ratio of 1 or below is safe. According
to our observations, a Redis publish/subscribe server will fail when the load ratio exceeds 1.15. We
can see that our load balancer is able to maintain the average load below 1 until the system as a whole
becomes overloaded. It is also able to maintain the load ratio of the busiest server below 1 for most of
the experiment.

3.7.3 Elasticity

In this experiment, we show how the Dynamoth load balancer handles fluctuating real-time conditions.
We first inject step by step 800 clients into the virtual environment; then we remove 600 (to reach
200); then we connect a little less than 400 additional clients (to reach almost 600). Figure 3.9 shows
the measurements gathered during this experiment. Figure 3.9a shows the number of players as well as
the number of Redis publish/subscribe servers that were being used at a given time. Figure 3.9b shows
the average response time and number of outgoing messages over time. In both figures, the points in
time where the Dynamoth load balancer triggered a rebalancing are denoted by a diamond.

We observe that as the number of clients increases, rebalancings occur, which sometimes require
the addition of new servers. When the number of clients decreases, rebalancings also occur and are
able to release servers again to save cloud infrastructure costs. Since those rebalancings have a lower
priority, there is an observable delay between the time when the load decreases and the servers are
removed. As in the previous experiment, when high-load rebalancings occur, we observe small spikes
in average latencies as rebalancing adds additional load to already loaded servers. When scaling down,
rebalancings do not cause spikes in average latencies because such rebalancings only occur when
publish/subscribe servers are underloaded.

Overall, this experiment reveals that Dynamoth is correctly able to handle fluctuating workload
patterns by providing adequate resources as needed.
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Figure 3.9: Handling a Varying Number of Players
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Figure 3.10: Availability: Messages and Load Ratio

3.7.4 Availability

This experiment aims at assessing the availability properties of Dynamoth. For each run, we started
the system with up to 400 players and 3 pub/sub servers (0, 1 and 2) with a similar workload on 20
Amazon EC2 instances. About 1700 incoming messages per second were fed to the 3 pub/sub servers
by all publishers, which were in turn delivered to multiple subscribers (about 10,000 outgoing messages
per second - figure 3.10a) across 64 topics. The initial load ratio on each server was around 0.4-0.6,
which meant that the outgoing bandwidth capacity on each server was used to 40%-60% (see the first
seconds of figure 3.10b).

3.7.4.1 Failure Detection and Recovery

After approximately 10 seconds, server 1 crashes. On figure 3.10a, we can observe that the total number
of outgoing messages drops by approximately 33%, but the number of incoming messages remains
constant since publishers are still attempting to send the same amount of messages (they did not detect
the failure yet). In figure 3.10b, we observe that server 1 becomes inactive (due to the failure); however,
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servers 0 and 2 are still sending messages. Since this experiment was run in a controlled environment,
after several trial runs, we determined that a failure detection time of 10 seconds (Tdetect “ 10) and a
resubscribe time of 2 seconds (Tresub “ 2) were adequate. To simplify the display of results, in this
example, we made all players detect the failure near the end of the detection window (around 9 seconds
after the crash, a bit before the expiration of Tdetect “ 10). Then, as described in section 3.5.6, they
wait for Tdetect`Tresub “ 12 seconds before replaying their publications. Thus, playback occurs about
21 seconds after the crash, for all publishers (time t “ 31 on the graph).

Consequently, on figure 3.10a, at t “ 31 seconds, the amount of outgoing messages rises signifi-
cantly (up to ~1800 messages per second) for a few seconds while old messages are replayed (assuming
that message replaying is enabled for all topics), and then stabilizes again at 10,000 messages per sec-
ond when the replaying of previous messages is completed. We observe that the incoming messages
curve follows the same pattern. On figure 3.10b, we can see that the load ratio on servers 0 and 2 goes
up since they “absorb” the load of server 1. During the recovery phase, the load goes up to ~1.20,
which according to our experiments, was a safe maximum that servers could support without collaps-
ing. In our experiment, we enabled the throttling feature of Dynamoth so that (1) message replaying
did not overload clients and servers, and (2) processing of messages from other non-failed topics was
not impacted. After message replaying completes, the load ratio of servers 0 and 2 stabilizes again, but
at a higher level, (~70-80%), since their current load now includes the absorbed load of server 1. At
this point, after recovery, the load balancer is restarted and can decide to run rebalancing operations, if
needed.

3.7.4.2 Comparison of the different Guarantee Levels

In figure 3.11, we compare the different guarantee levels supported by Dynamoth: reliable/FIFO (or-
dered playback), reliable/NoOrder (concurrent playback) and best effort, as defined in sections 3.5.5
and 3.5.6. For all approaches, we monitored the average response times (latencies) at regular inter-
vals (once per second). For subsections 3.11a, 3.11b and 3.11c, the x-axis corresponds to the time
since resubscription, and we collected latency data only for messages sent across topics that have been
remapped due to the failure. For figure 3.11d, the time starts a few second before recovery takes place
and latency data was collected for all topics.
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Reliable / FIFO (Ordered Playback) In figure 3.11a (Ordered Playback), we show average re-
sponse times for (a) replayed messages only (sent while failing or during reconfiguration, but before
resubscription, and had to be replayed) and (b) new messages only (sent after resubscription). The (a)
curve shows that latencies are initially very high - over 21 seconds - which makes sense since the first
messages that could not be delivered and had to be replayed were originally sent over 21 seconds ago,
at the moment of the crash. Then, as more and more messages get sent at a faster rate (in order to
quickly clear up the queue Qr), response times go down. Between time t “ 7 and t “ 9, new messages
start to be sent from some clients (curve (a)) concurrently to the sending of replayed messages by other
clients, until a point where all clients only send new messages (curve (a) only). We observe that the
first response time measurements for new messages are initially high, which is a consequence of the
ordered playback approach where all new messages must be sent after all replayed messages have been
sent, in order to preserve FIFO ordering guarantees. Eventually, at time t “ 13, all queued messages
(for both queues Qr and Qf ) have been sent for all clients and response times return to their baseline
level (recovery is completed and normal message processing is reenabled).

Reliable / NoOrder (Concurrent Playback) In figure 3.11b (Concurrent Playback), for (b) new
messages only, latencies are always at their baseline threshold (ie. the curve is directly on the x-axis),
since playback of new messages takes place concurrently to the playback of old publications. That
also explains why new messages are sent as soon as subscriptions are reestablished (time t “ 0). This
figure demonstrates that enabling concurrent playback allows new publications to be sent without any
additional delay (assuming that servers are able to handle the increased post-recovery load). For (a)
replayed messages, we recall that Dynamoth replays the queue in reverse order in order to minimize
response times for undelivered messages, since some messages at the head of the playback queue will
probably already have been delivered before the failure. Reverse playback is reflected on the figure:
messages initially have low response times, which slowly grows until a peak is reached, and then
suddenly dropping to baseline values again (only new messages, curve aligned with x-axis).

Comparison of Ordered and Concurrent Playback Approaches Figure 3.11c compares the (a)
ordered playback and (b) concurrent playback approaches for both replayed and new messages com-
bined. We can see once again that the concurrent scheme leads to lower average response times and
favors recent messages due to the concurrent playback of new messages and the replaying of missed
messages in reverse order, which ultimately leads to a quicker completion of the failure recovery pro-
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cess (at the expense of sacrificing FIFO ordering).

Impact on Global Performance of all Approaches Figure 3.11d shows a holistic view of the impact
of all Dynamoth failure recovery mechanisms on the average response times observed for all messages
sent through all topics, across all publish/subscribe servers. The (a) ordered and (b) concurrent curves
exhibit similar trends as in figure 3.11c, with lower average response times, since the baseline response
times observed for topics not impacted by the failure are also taken into consideration (this was not
the case for figures 3.11a, 3.11b and 3.11c). Note that our throttling mechanism during playback is
designed so that the replaying process does not impact the sending of messages across such topics.
This figure also gives results for an experiment that we ran with the best effort approach (no delivery
guarantee, since there is no playback of potentially missed messages, new messages are sent as soon
as reconfiguration has completed). Figure 3.11d shows that the use of this recovery mechanism does
not have any significant impact on the response times, since missed publications were simply not
delivered and that the non-failed servers in our experiment were able to handle the increased load. As
a consequence, the results for this experiment, which are illustrated by curve (c), are aligned with the
x-axis since there was no significant performance impact.

3.8 Dynamoth Conclusions

We presented Dynamoth, our topic-based publish/subscribe middleware platform optimized for latency-
constrained environments. Dynamoth uses independent publish/subscribe servers deployed in the cloud
to handle the delivery of all publications in a broker-less way in order to minimize latencies. A ma-
jor contribution is our hierarchical load-balancer which can perform rebalancings at the system-level
(macro) and at the topic-level (micro). System-level load balancing enables our system to scale to ar-
bitrary numbers of publishers, subscribers and publications in real time in order to adapt to the current
load conditions. Additional publish/subscribe servers are dynamically allocated from the cloud when
needed and removed when they are not required anymore. Topic-level load balancing (replication)
allows our platform to handle special topics which exhibit high load patterns such as topics with ex-
tremely large numbers of publishers, subscribers and/or publications: such topics can be mapped to
more than one publish/subscribe server. Dynamoth also proposes an elaborate propagation mechanism
to notify all relevant clients of changes to topic assignments with very minimal impact on performance,
while ensuring uninterrupted delivery of all messages. In addition, Dynamoth provides performance-
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driven availability and failure recovery by proposing an approach to automatically recover failed sub-
scriptions and publications in the event of a server failure. Finally, our failure recovery approach also
provides different guarantee levels on a per-topic basis, such as the preservation of FIFO ordering if
needed by the application.

We built an implementation of Dynamoth and ran extensive, large-scale experiments using a mul-
tiplayer game prototype as an application testbed. Our experiments reveal that Dynamoth is able to
scale in an elastic manner as the number of subscribers, publishers and publications grow while main-
taining low response time despite the very high variability in the workloads. When the load decreases,
unnecessary resources are automatically released. Our results also revealed that Dynamoth was prop-
erly able to handle server failures and get back to a working state, while promptly recovering missed
publications.
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4
MultiPub: Latency and Cost-Aware

Publish/Subscribe

The Dynamoth [53] system, described at the previous chapter (3), proposes a fully dynamic, scalable
and available topic-based publish/subscribe service for cloud-based environments. While the service is
tailored for general-purpose publish/subscribe applications, it nevertheless takes into consideration the
needs of latency-constrained applications, notably due to its non broker-based flat architecture and its
replication mechanism. However, Dynamoth’s load balancing model was limited to scaling in terms of
bandwidth. While preventing the over-saturation of servers certainly has benefits in terms of reducing
response times, a limitation of Dynamoth in the context of latency-constrained applications is that it
made no guarantees regarding publication delivery times (latency), in particular when clients are spread
across the world.

MultiPub aims at solving this limitation of Dynamoth by proposing a fully dynamic global-scale
topic-based pub/sub middleware, specifically tailored towards applications which require meeting strict
delivery time bounds, such as multiplayer games, while attempting to optimize cloud-induced costs.
MultiPub notably takes into consideration the fact that cloud providers have resources in several geo-
graphical regions.
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4.1 MultiPub’s Main Contributions

MultiPub provides two main contributions. The first major contribution is that it allows the user to
set timing constraints on a per-topic basis, and ensures that such constraints are respected whenever
possible. Depending on client locations, delivery bounds and cloud costs, a given topic can be man-
aged by server(s) within a single or multiple cloud regions. As a second major contribution, MultiPub
automatically finds the best configuration in terms of costs that does not violate delivery guarantees,
and reconfigures whenever conditions change.

Our general contributions towards the optimization of global-scale publish/subscribe systems are
summarized as follows:

‚ We provide a ready-to-use dynamic global-scale topic-based pub/sub middleware that can be
deployed as a service in the cloud.

‚ Our approach takes advantage of cloud providers that offer resources in geographically dispersed
regions and considers their specific characteristics (bandwidth-related costs and latencies), in
order to generate an optimal configuration in terms of assigning regions to handle topics and
clients. Two different message routing approaches are supported.

‚ Our system automatically collects and analyzes real-time measurements from all nodes and con-
tinuously reconfigures itself whenever a more appropriate configuration is found (more cost-
efficient or more latency-minimizing). In the same spirit as Dynamoth, this analysis and recon-
figuration process is entirely transparent to users of our platform.

‚ We have built a complete simulation package (MultiPubSimulator) to extensively evaluate our
model under different scenarios.

‚ We have also built a prototype of MultiPub on top of Dynamoth [53], in order to evaluate Multi-
Pub in a real cloud setting.

‚ We have gathered real latency measurements towards and between all regions of the Amazon
EC2 cloud [5]. Combined with the King dataset, we derive realistic client latency values to feed
both our simulator and MultiPub prototype.

‚ We have run several experiments to compare MultiPub against default, static pub/sub latency
optimization approaches, demonstrating how it is able to reduce costs while meeting delivery
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R Region Location $EC2 $Inet
R1 us-east-1 N. Virginia 0.02 0.09
R2 us-west-1 N. California 0.02 0.09
R3 us-west-2 Oregon 0.02 0.09
R4 eu-west-1 Ireland 0.02 0.09
R5 eu-central-1 Frankfurt 0.02 0.09
R6 ap-northeast-1 Tokyo 0.09 0.14
R7 ap-northeast-2 Seoul 0.08 0.126
R8 ap-southeast-1 Singapore 0.09 0.12
R9 ap-southeast-2 Sydney 0.14 0.14
R10 sa-east-1 Sao Paulo 0.16 0.25

Table 4.1: EC2 Outgoing Bandwidth Costs

time bounds under various conditions. Real cloud-based experiments were run over multiple
regions of the Amazon EC2 cloud, and results obtained from our full system implementation
validated our simulation-based results.

To the best of our knowledge, MultiPub is the first attempt at proposing a pub/sub system that uses an
optimization approach that considers both delivery times and cloud costs to determine cost-effective
and time-constrained deployments in a global-scale setting.

4.2 MultiPub Model

MultiPub is a topic-based cloud publish/subscribe middleware that is tailored for latency-constrained,
world-scale applications. MultiPub servers can be installed in as many cloud regions as necessary
to serve clients. Given a set of regions, and a topic with its publishers and subscribers, MultiPub
automatically determines which regions should be handling the topic considering that publishers and
subscribers are located world-wide and have varying latencies towards each of the different regions.
Inspired by Dynamoth’s replication mechanism (section 3.2.4), MultiPub allows any given topic to be
handled by more than one server; in this case, in different cloud regions.

The selection of which region(s) should be responsible for any given topic takes into account two
factors. First, delivery times should be kept under a user-defined threshold, if possible. Second, since
the use of the cloud incurs costs on a pay-per-use basis, MultiPub chooses, among the set of con-
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figurations that can fulfill the delivery constraints, the configuration that is the cheapest in terms of
cloud-related costs. Table 4.1 shows the 10 regions offered by Amazon EC2. Throughout this chapter,
we use this region setup as an example for both our latency as well as our cost calculations. Note that
MultiPub is not limited to cloud regions offered by a single provider; it could also work with regions
offered by different providers [93].

4.2.1 Delivery Constraints vs. Cost Minimization

With MultiPub, a delivery time constraint can be specified for each topic T . The constraint specifies the
maximum allowed delivery time (maxT ) for a ratio of all publications received across T (ratioT ). For
instance, maxT “ 200 and ratioT “ 95 mean that 95% of all messages sent on T should be delivered
within 200 ms or less. MultiPub makes sure that this constraint is respected, if possible. However, in
some cases, it might be unrealistic. For instance, some clients might experience very high latencies
due to the use of mobile or satellite connections, or the requested maxT threshold might simply be too
low. If the constraint cannot be met, then MultiPub finds the most latency-minimizing configuration,
irrespective of costs. A configuration for a topic T defines the regions which handle the topic, as well
as for all publishers or subscribers, to which server(s) they should connect. The different configuration
options are described at the next section (4.2.2).

If there is more than one configuration that fulfills the delivery constraint, then MultiPub chooses
the one with minimal cost. The MultiPub cost model only considers bandwidth-related costs as this is
by far the dominating factor. Given the simplicity of topic-based matching, the costs related to message
dissemination are much higher than CPU costs. In contrast, this assumption could certainly be different
for content-based systems which can be much more CPU-intensive.

In current cloud infrastructures, cloud inbound bandwidth is typically free, while there are differ-
ent costs associated with outgoing bandwidth towards other cloud regions and outgoing bandwidth
towards external clients. As the baseline for this paper, Table 4.1 details the costs in terms of outgoing
bandwidth of the various EC2 regions. Column $EC2 gives the costs of 1GB of outgoing data sent
towards another EC2 region, while column $Inet lists the costs of 1GB of data sent towards any
node on the Internet. We observe that the outgoing costs in some regions (Asia and South America) are
very expensive compared to others. Thus, it might be worth avoiding to route topics through servers in
regions with expensive bandwidth costs if the delivery constraints allow for such optimization.
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4.2.2 Configuration Options

Supporting publishers and subscribers in different cloud regions, while ensuring that latency constraints
are respected, can be challenging. Figure 4.1 presents three straightforward approaches which will
serve as baseline and figure 4.2 shows our MultiPub dynamic approach. Assume the 10 Amazon EC2
regions and a topic T with 5 publishers, one each close to the regions R1, R3, R5, R8, and R10 respec-
tively, and 5 groups of subscribers, each group being close to one of these five regions, and having 80,
5, 40, 25, and 2 subscribers respectively.

4.2.2.1 One Region

In the simplest case, the pub/sub middleware in only one region (figure 4.1a) is in charge of all publica-
tions and subscriptions on topic T . In this scenario, all publishers and subscribers for this topic connect
to the service in this region. With this setup, some clients will experience very high latencies due to
fact that some publications will travel for long and/or cross ocean distances twice. For instance, upon
P1 (close to region R1, i.e., North Virginia) publishing to T , the publication needs to travel from P1’s
location to the cloud region R5 (long distance), where the pub/sub service then sends the publications
to all subscribers. All subscribers except of those in group S5 will receive the publication only after
a long delay as they are far away from R5. The advantage of this approach is, however, that it is less
expensive, as R5 is one of low-cost regions.

4.2.2.2 All Regions

This approach involves statically having pub/sub servers in all cloud regions handle topic T . This
scheme allows for minimizing delivery times, since each subscriber automatically uses its closest, local
cloud region (figures 4.1b and 4.1c). With the direct delivery approach (figure 4.1b), upon publishing,
all publishers send all publications towards all regions (note that the figure only shows publications
from one publisher to simplify). One problem of this approach is that all publishers must send their
publications to all regions, which can be cumbersome, in particular as outgoing bandwidth might be a
limiting factor for some publishers.

Routed delivery (figure 4.1c) is an alternative scheme where publishers only send towards their
local, closest region (again, only one publisher is shown in the figure). The local region then forwards
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(a) One Region

(b) All Regions / Direct Delivery

(c) All Regions / Routed Delivery

Figure 4.1: Typical Publication Delivery Approaches
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the publication to the pub/sub service in all other regions. This scheme solves the issue of publishers
publishing towards all regions, at the expense of increased delivery costs due to the additional outgoing,
inter-region cloud bandwidth costs. Although the cost is usually smaller then sending to clients, it can
still be significant.

At first view it might appear that using the direct delivery approach will always yield lower latencies
than routed delivery as messages always only travel two hops (from publisher to the service, and from
there to the subscribers) while routed delivery has one additional hop (from cloud region to another
cloud region). However, as inter-cloud links are often more optimized, the actual latencies can vary
significantly, and thus direct delivery might have lower latency in some configuration while routed
delivery can have lower latency in other configurations. Section 4.6.3.2 describes an experiment that
compares direct against routed delivery.

An obvious drawback of the all regions approach is that this scheme forces all available regions
to be used for topic T despite some regions having very few or no clients, thus consuming additional
potentially unnecessary resources.

Furthermore, the approach is potentially considerably more costly than the one-region approach,
as all regions are used, and some of them have considerably higher bandwidth costs than others. If
delivery constraints are not violated, it would make sense to drop regions where bandwidth is very
expensive (such as South America or Singapore).

4.2.2.3 MultiPub

MultiPub (figure 4.2) finds the best combination of cloud regions to use among all possible regions
for topic T . MultiPub also determines whether direct or routed delivery should be used. Figure 4.2a
shows an example of MultiPub with only 3 regions selected for topic T out of the 10 possible regions,
using the direct delivery approach. Since there are very few subscribers in regions R3 and R10, Mul-
tiPub chooses to ignore these regions. Subscribers close to these two regions are assigned to region
R1 instead, since this region happens to be their second closest region. Figure 4.2b shows the same
example, with routed delivery instead. Publisher P3 publishes towards its closest available region (R1

in Virginia, since R3 in Oregon has not been selected by MultiPub for topic T ). The MultiPub instance
installed in R1 forwards the publication to regions R5 and R8.
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(a) MultiPub / Direct Delivery

(b) MultiPub / Routed Delivery

Figure 4.2: MultiPub Publication Delivery Approaches
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4.3 System Architecture

The MultiPub cloud-based architecture, which is depicted in figure 4.3, spawns across multiple cloud
regions, in order to be scalable and ensure that constraints are respected. In the following subsections,
we describe the various architectural components of MultiPub.

4.3.1 Server Clusters

Each cloud region has an instance of the MultiPub service. In each cloud region, the pub/sub process
matching itself can be performed by one server or by a set of servers, as this is the case with Dynamoth
[53] (described at chapter 3). As such, MultiPub uses Dynamoth internally in each of the cloud regions,
while MultiPub provides a global-scale overlay on top of the Dynamoth instances deployed in each
region. In principle, we could use any scalable pub/sub platform that can be deployed in a single cloud.

We consider supporting multiple servers per region as an orthogonal problem since intra-region
scalability can be managed locally, on a per-region basis, without altering the way in which MultiPub
behaves. Dynamoth brings an adequate solution to this problem and offers an API that completely
abstracts its inner working. Thus, we view each Dynamoth instance in each region as a black box,
that can be abstracted from a conceptual point of view as a single server. Throughout this chapter, we
assume, for simplicity, that there is a single server per region, and use the terms “service” and “server”
interchangeable.

4.3.2 Assigning Regions to Topics

MultiPub allows topics to be handled by one or more regions. The mapping of topics to regions is
expressed as a bit matrix, referred to as assignment matrix, where the columns are the regions and the
rows are the topics. The row for topic T contains a 1 for each column representing a region that handles
topic T , and a 0 for regions that do not handle topic T .

4.3.3 Region Managers

Each region has a region manager component that collects real-time data for every topic T maintained
by the region including, the list of all publishers who publish to T , the list of subscribers who have
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Figure 4.3: MultiPub Architecture
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subscribed to T , as well as the number of messages and their sizes in bytes sent by each publisher over
T . The design of the region managers and the statistics that they collect are inspired by the local load
analyzers found in Dynamoth (section 3.3.1).

Data is collected throughout a collection interval, and then sent to the MultiPub Controller which
can then determine overall delivery times and bandwidth costs over the last time interval. The collection
interval is a configurable variable. It should be long enough to capture correctly the amount and sizes
of messages sent by publishers, but short enough to not consider outdated information (for instance,
publishers that stopped sending publications a while ago).

4.3.4 MultiPub Controller

The MultiPub controller is installed in one of the regions. It aggregates the data received from the
region managers. Furthermore, it maintains for each topic T , the delivery constraintă ratioT ,maxT ą

(where the ratioT percentile of messages must be delivered to subscribers within a time bound of
maxT ). Finally, it keeps track of the latencies between every client C in the pub/sub system (publisher
or subscriber) and each of the cloud regions pLq, as well as the latency between each pair of cloud
regions pLRq (both are described in section 4.4.2). These latency values are needed to compute an
optimal solution. We will discuss later how we structure and maintain this information.

4.3.4.1 Solver

For each topic T , the solver subcomponent of the controller continuously recomputes an optimal con-
figuration, considering as input the latest information about each topic collected by the region man-
agers. If a better configuration as the current one is determined for a topic, the new configuration is
sent in form of a bit vector to the region managers which then incorporate them into their assignment
matrix.

4.3.4.2 Applying a New Configuration

The new configuration also has to be sent to clients of topic T (subscribers and publishers). If a region
was added for this topic, and the new region is closer for some of the subscribers on T than any
previous region of this topic, then those subscribers have to subscribe to T on the new region instead.
Correspondingly, if a region was removed, then the subscribers that were currently connected to this
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region must reconnect to the next closest region.

Similar holds for publishers with the routed delivery approach: they have to reestablish their con-
nections if the region closest to them changed between the old and the new configuration. In contrast,
with direct delivery, where it is necessary for publishers to publishers to all regions handling T , all
publishers have to be informed as a configuration change means that the regions responsible for T
have changed. Thus, the publishers have to send their publications to the new set of regions mapped to
topic T .

For example, assuming a scenario with a topic T with 10 publishers and 10 subscribers in North
America and 10 publishers and 10 subscribers in Europe, and only a server in Region R1 assigned to
T . The MultiPub controller determines that subscribers in Europe experience delivery times that are
over the threshold for a significant portion of the publications that they receive (more precisely, for all
publications sent from a publisher in Europe and received by a subscriber in Europe, as these messages
cross the Atlantic twice). The controller then decides that T should now map to two regions: R1 (us-
east-1) and R5 (eu-central-1) with a direct delivery approach in order to meet delivery constraints. All
20 publishers need to receive the new configuration so that they now send their publications to both
regions, as well as the 10 subscribers in Europe as they have to resubscribe to the European region R5.
With this, any message crosses the Atlantic at most once.

4.3.4.3 Handling Configuration Changes

In our current implementation, for any given client C, the region manager in the region that is the
closest to C in the old configuration has the responsibility of informing C of a configuration change. In
the example above, this means, that the region manager of R1 informs all publishers and all European
subscribers of the change. One has to be careful that subscribers don’t miss notifications when the
configuration changes and before clients have successfully reestablished their connections to other
regions. Dynamoth, that we use for scalability within each cluster, faces the same challenges when it
comes to balancing the load among servers within each cloud region. Thus, the same reconfiguration
mechanisms that are proposed in Dynamoth within the cloud (described in section 3.4), are used at
global-scale for MultiPub.

Note that new clients can receive the current configuration for a topic through a simple lookup at
any of the region managers. Also note that all internal system-related messages such as the sending
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of the new configurations, the collection of data by region managers and the messages between region
managers and the controller are sent using the standard MultiPub pub/sub interface over special system-
related topics, and not through designated communication topics.

4.4 System Model

In this section, we describe our MultiPub pub/sub model more formally. In particular, assuming a par-
ticular configuration for a topic T , consisting of publishers, subscribers and a set of regions that handle
T , we show how delivery times and the bandwidth costs over a given time period can be calculated.
In the following sections, the descriptions apply to a single individual topic T , since topics are treated
independently in MultiPub. The same computations can be done for any other topic. Also, we use the
short term region to refer to the MultiPub service running in this cloud region.

4.4.1 Publishers, Subscribers, Regions and Publications

There are a total of N total
R regions. Considering topic T, we denote with NP the number of publishers

for T , with NS the number of subscribers to T and with NR the number of regions that are assigned to
T . S “ tS1, . . . , SNS

u is the set of subscribers for topic T , P “ tP1, . . . , PNP
u is the set of publishers

for T , and R “ tR1, . . . , RNR
u is the set of regions serving T .

As discussed before, we consider both direct delivery where a publisher P sends a message to
all regions in R, and routed delivery where it sends it to only one region, denoted as RP , who then
forwards it to the other regions in R. RP is the region that is the closest (latency-wise) to P . All
subscribers of topic T connect to only one region RS P R, namely the closest. We denote with SR Ă S
the subset of subscribers that use region R to receive publications on topic T , and with NR

S the number
of subscribers that subscribe to topic T on region R. Therefore, NS “

ř

RPRN
R
S .

Given a publication message M sent by publisher P on a given topic T , M is sent to each of the
regions R P R (either by P directly or through RP ) and then each region R forwards it to all the NR

S

subscribers, leading to NR messages towards all cloud regions handling T and a total of NS messages
towards all subscribers.
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4.4.2 Latency Model

A subscriber S to topic T connects to RS P R, which is the closest to subscriber S. The same case
applies for publishers if routed delivery is enabled for topic T . To determine the qualifying region, we
maintain a latency matrix L, where each row represents a client C (either a publisher or a subscriber)
and each column a cloud region R. There is a total of N total

R columns, which also include regions that
do currently not serve topic T , since C might be using a one such region for any other topic than T , or
the MultiPub controller might decide to add one such region to the list of regions assigned to T as part
of a reconfiguration operation.

Entry LCR indicates the expected one-way latency (message delivery time) between client C and
region R (either direction). Thus, a subscriber S (publisher P ) connects to RS P R (RP P R) with the
smallest LSRS (LPRP ) value among all regions in R. We assume LCR to remain constant, but our model
still holds if the value is updated over time at an infrequent rate. For instance, the infrastructure can
monitor latency changes between every client C and every available region R periodically and update
LCR accordingly.

We also define a second latency matrix LR, which represents one-way latencies between pairs of
cloud regions. LR

RiRj
denotes the latency between region Ri and region Rj . Obviously LR

RiRi
“ 0. Re-

sults for the 10 regions of the Amazon EC2 cloud were determined and are presented in section 4.6.1.1.
For simplicity (conceptually and from an implementation standpoint), we only considered the Amazon
cloud, but our latency model could take multiple provider’s latency metrics into consideration.

As mentioned previously, the MultiPub controller optimizes placement of topics on cloud regions
by taking both L and LR into consideration.

4.4.3 Publication Delivery Time

The total delivery time DpMPSq of any given publication M sent from publisher P on topic T towards
subscriber S depends on whether direct or routed delivery is used. For simplification purposes, we
assume that the processing time of messageM at any node is negligible which we believe is reasonable
given that obtaining the list of subscribers for a given topic in topic-based publish/subscribe can be
implemented as a simple lookup operation.
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4.4.3.1 Expected Direct Delivery Time

Publisher P directly sends its publication M to all regions R P R handling T , which then forward it to
their local subscribers. Thus, for subscriber S connected to it’s closest region RS , delivery is done in
two hops and is calculated using equation 4.1.

DDirect

`

MPS
˘

“ LPRS ` LRSS (4.1)

4.4.3.2 Expected Routed Delivery Time

Publisher P sends its publicationM towards its local regionRP , i.e., the one which minimizes latency.
RP then forwards M to all other regions R P R handling T . Each region then forwards M to their
local subscribers. Thus, the delivery can be calculated using equation 4.2 and includes either two hops
(for the subscribers with RS “ RP , in which case LR

RPRS “ 0) or three hops.

DRouted

`

MPS
˘

“ LPRS ` LR
RPRS ` LRSS (4.2)

4.4.4 Publish/Subscribe Cost Model

As mentioned, the MultiPub cost model only considers bandwidth-related costs. In the following, we
designate with αpRq the cost per outgoing byte from region R towards a different region (derived from
column $EC2 in table 4.1), and with βpRq the cost per outgoing byte towards any client-subscriber of
R (derived from column $Inet).

In order to calculate the overall bandwidth costs for our approaches, we need some additional in-
formation about the number of messages per collection interval and their size. Thus, for each publisher
P we need to know not only the number of messages NP

M published by P on topic T , but also the set
of all individual messages MP “

!

MP
1 ,M

P
2 , . . . ,M

P
NP

M

)

. Then, for each message MP
j , we need to

know its size ΩpMP
j q in bytes.

With this, we can calculate the total costs ZDirect for topic T using the direct delivery approach,
given in equation 4.3.
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ZDirect “

NP
ÿ

k“1

NP
M
ÿ

j“1

NR
ÿ

i“1

NRi
S ˆ ΩpMPk

j q ˆ βpRiq (4.3)

That is, for each publisher P , for each of its messages MP
j and for each of the regions Ri serving

topic T , the outgoing bandwidth is the size of the message multiplied by the number of subscribers
using region Ri multiplied by the bandwidth costs per byte for this particular message.

The total costs ZRouted for topic T using the routed delivery approach have to additionally consider
that the region local to a publisher P forwards the message to all other regions serving topic T (of
which there are NR ´ 1):

ZRouted “

NP
ÿ

k“1

NP
M
ÿ

j“1

NR
ÿ

i“1

NRi
S ˆ ΩpMPk

j q ˆ βpRiq`

NP
ÿ

k“1

NP
M
ÿ

j“1

pNR ´ 1q ˆ ΩpMPk
j q ˆ αpRP

q (4.4)

4.5 Optimization Problem

For each topic T , the MultiPub controller determines on a regular basis the optimal configuration
given the topic’s delivery constraint ă ratioT ,maxT ą, the publishers and subscribers of T in the last
observation interval, and the number and size of the messages sent by the publishers in that observation
interval. To this aim, the controller has to consider every possible assignment (configuration) of the
topic to the various regions. A configuration for T can be encoded as a bit vector: the bit for each
region can either be set (topic assigned to the region) or not set. As this represents one row of the
assignment matrix, we refer to it as assignment vector V for topic T . Thus, given that there are a total
of N total

R regions, then there are 2Ntotal
R ´ 1 possible assignments (it is not possible for all region bits to

be zero since a region must be assigned to at least one region). Furthermore, for configurations where
at least two bits are set, then the two delivery approaches described in section 4.2.2.3 become available:
direct and routed delivery. Thus, there are a total of 2 ˆ p2Ntotal

R ´ 1q -N total
R possible configurations.

Although this is exponential in the number of regions, the number of regions is typically fairly small.

For each of these configurations, MultiPub calculates what would have been the delivery times for
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all messages sent in the last observation interval. From there, it calculates whether the configuration
would have fulfilled the topic’s delivery constraint ă ratioT ,maxT ą. If no configuration fulfills
the constraint, then MultiPub chooses as next configuration the one that is closest to the requested
constraint, that is the one which minimizes the lowest overall delivery time irrespective of the costs.
If the delivery constraints can be fulfilled by one or more configurations, MultiPub chooses the one
with the lowest costs. Thus, MultiPub will not always choose the most latency-optimal configuration;
instead, it will choose the most cost-effective configuration that respects the delivery constraint if such
a configuration exists.

Note that in the special case where no delivery constraints are given, then MultiPub chooses the
configuration with the lowest costs irrespective of the delivery times. This case is useful if the appli-
cation can tolerate high delivery times, for some topics. If there are several configurations with the
same lowest costs, it chooses the one with the lowest overall delivery time. In the next subsections, we
describe the individual optimization steps in more detail.

4.5.1 Checking for Delivery Constraint

This section describe precisely how MultiPub determines if a possible configuration G fulfills a given
delivery constraint. Given configurationG for topic T (assignment vector V , and either direct or routed
delivery), MultiPub first determines for each subscriber S P S (and in case of routed delivery publisher
P P P) the closest region RS (RP ) for which the bit is set in V . With this, it calculates for each
publisher P and subscriber S the latency DpMPSq observed for sending a publication from P to S
as expressed in equations 4.1 and 4.2 of section 4.4.3 for both direct and routed delivery approaches,
respectively.

From there, MultiPub creates a list DG which contains, for each publisher P and for each of P ’s
messages sent in the last observation interval MP “

!

MP
1 ,M

P
2 , . . . ,M

P
NP

M

)

, the delivery times: either
DDirectpM

PS
i q or DRoutedpM

PS
i q depending on the chosen approach. DG is sorted by delivery time,

with the shortest delivery time first. The cardinality |DG| is the total number of messages exchanged
between publishers and subscribers, i.e., the total sum of all messages sent by all publishers multiplied
by the number of subscribers NSˆ

řNP

k“1N
Pk
M . The delivery constraint for topic T requires that a per-

centile of ratioT messages be delivered in at most maxT time. This is equivalent to checking whether
the nT -ieth delivery time in the sorted list DG is below or equal to maxT where:
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nT
“

R

ratioT
100

ˆ |DG|

V

(4.5)

We refer to this nT -ieth delivery time as delivery time percentile D̊G for configuration G and it has
to be lower or equal to maxT (equation 4.6). The following constraint has to be fulfilled for G to be
further considered as a candidate configuration.

D̊G “ DG

“

nT
‰

ď maxT (4.6)

4.5.2 Bandwidth Costs for Topic T

Given a possible configuration G that fulfills the delivery constraint, the bandwidth cost ZG is then
calculated according to equations 4.3 and 4.4 of section 4.4.4, for each of the regions specified in the
assignment vector V of G, as well as the delivery approach specified in G. The number of publishers,
subscribers on topic T , as well as the set of publications issued by each publisher P (MP ), are also
taken from the last observation interval.

4.5.3 Determining the Optimal Solution

After having determined the delivery time percentile and bandwidth costs for each configuration G,
we sort the configurations by costs. Then we take the configuration with the lowest cost that fulfills the
delivery constraint. As mentioned previously, if there are several candidate configurations that have the
same lowest cost, we choose the one that has the lowest delivery time percentile. If there are several
configurations that also have the same delivery time percentile, then we choose the one that uses the
least amount of regions. In the extremely unlikely event where multiple suitable configurations are
found (same costs, same lowest delivery percentile and same number of regions), we choose a random
one among them.

In contrast, if no configuration fulfills the delivery constraint, we take the one with the lowest
delivery time percentile irrespective of its cost.
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4.5.4 Independence of Topics

MultiPub minimizes costs for all topics, while respecting all constraints (whenever possible) for every
topic. Minimizing the costs for every topic leads to a global minimization of the overall costs. Since
there is no global constraint, or inter-topic constraints, all topics can then be considered as independent.
Therefore, we have a distinct optimization problem for each topic. In other words, the outcome of
optimizing one single topic will not impact the optimization of any other topic.

MultiPub does not consider the costs that are caused by changing the configuration, neither how
it affects delivery times during reconfiguration, nor whether there are any cloud costs involved in
the reconfiguration, as we do not expect changes to occur very often. Nevertheless, this might be an
important consideration that is left for future work.

4.6 Experimental Validation

In order to evaluate the MultiPub model, we wanted to study its behavior and performance under a
wide range of configurations. Unfortunately, running experiments across multiple cloud deployments
is costly, as in addition to VM rental costs, outgoing bandwidth costs apply for data transferred towards
clients and between cloud regions as listed in table 4.1. We therefore decided to simulate our large-scale
experiments, which are described in subsection 4.6.3. To validate the accuracy of our simulations, we
then built a full implementation of MultiPub that we deployed in the Amazon EC2 cloud. Using it, we
ran a set of smaller-scale, real-world experiments in multiple regions to validate the trends observed in
our simulation, while keeping the costs to a reasonable level. The real-world experiments are described
in subsection 4.6.4.

4.6.1 Determining Latencies for Simulation

Since our formal modeling depends on the inter-cloud latency matrix LR and on the client-to-cloud
latency matrix L, we need to generate appropriate and realistic latency values. In the following subsec-
tions, we describe the methodology that we employed to generate reliable values for L and LR.
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 - 33 42 41 45 74 92 109 115 60
R2 34 - 11 74 84 52 68 88 79 93
R3 42 11 - 70 79 45 60 81 81 92
R4 41 74 70 - 10 107 122 105 155 96
R5 45 84 79 11 - 117 135 126 161 99
R6 73 52 45 107 117 - 17 38 52 128
R7 89 68 60 122 133 17 - 34 67 144
R8 109 88 81 97 126 38 34 - 88 164
R9 115 79 81 155 162 52 67 88 - 171
R10 60 93 91 96 100 129 144 165 171 -

Table 4.2: EC2 Inter-Cloud One-Way Latencies (in ms)

4.6.1.1 Inter-Cloud Latencies (LR)

As explained previously, we have access to servers in all regions of the EC2 cloud (and we could have
access to other clouds as well); therefore, we are able to measure latencies between machines in all
pairs of regions and generate the latency matrix LR.

We ran one t2.micro virtual machine instance with Ubuntu in each of the Amazon EC2 cloud re-
gionsR1 toR10 (the different regions are described in table 4.1). For each regionRi, we then measured
the latencies using the Linux ping command to every other region Rj . We took 100 measurements,
which we divided by 2, since ping yields the round-trip time. We repeated the experiment several times
and observed that these measurements had only very small variations; since the inter-cloud EC2 laten-
cies are stable, we simply use the average measured latencies for our simulation experiments as shown
in Table 4.2.

4.6.1.2 Client to Cloud Region Latencies (L)

To determine realistic latency measurements between clients and cloud regions, we use the publicly
available King dataset [57], which contains latency measurements between 1800 world-wide geo-
distributed DNS servers.

Since the King dataset gives us a set of over 1800 IP addresses in different geographical regions,
we attempted to measure the latency between each of the 10 cloud regions and each of the 1800
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Figure 4.4: Geographical Distribution of the Live King Nodes

addresses. In order to reach that goal, we deployed a virtual machine in each of the 10 cloud regions,
and performed a ping on each of the DNS servers in the King data set. From those 1800 machines, 700
responded. From those measurements, we built the latency matrix L. Since the King DNS servers are
distributed across the globe (see figure 4.4), we can use their latency values to estimate client-cloud
connection latencies from most places in the world.

4.6.2 MultiPubSimulator

We implemented a simulator named MultiPubSimulator in Python 3.5.1. MultiPubSimulator
notably has access to the measured real-world latencies stored in the matrices L and LR, as well as the
outgoing bandwidth costs (towards the Internet and towards another EC2 region) for each of the EC2
regions (table 4.1).

MultiPubSimulator can run simulations with any number of topics. For each topic, the num-
ber of publishers and subscribers can be specified. Furthermore, for each publisher, a specific publi-
cation rate and publication size must be configured, as well as which of the Amazon EC2 regions the
publisher machine should be geographically closest to. Using this latest criteria, MultiPub then draws
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a set of appropriate publishers and subscribers from the pool of King nodes, whose values will be used
to run the simulation.

Finally, for any given topic T , the upper bound in terms of maximum acceptable delivery time
(maxT ) and the ratio/percentile ratioT of all delivery time measurements that should be below maxT

must be specified.

The software aspect of MultiPubSimulator is described in section 6.3. We invite the reader
to read that section to get more details about the implementation of our tool.

4.6.3 Simulation Experiments

We used our MultiPubSimulator tool to run several simulation experiments in order to assess the correct
working of MultiPub and to demonstrate that it can adapt to a wide range of scenarios, which are
described in the next subsections.

4.6.3.1 Comparison MultiPub vs. Other Approaches

Experimental Setup The goal of this experiment is to compare how MultiPub compares to other
approaches in a context where publishers and subscribers are distributed across the globe. We simulated
one topic T with 100 publishers and 100 subscribers, where always 10 publishers and 10 subscribers
are located close to each of the EC2 regions. Each publisher publishes on average once per second.
Each message has 1 KByte

We compare MultiPub, where we vary the delivery time bound maxT between 100ms and 200ms,
against a) the “All Regions (Routed Delivery)” model (see section 4.2.2.2), which should yield the
fastest results because publishers and subscribers use the region that minimizes their delivery time, and
b) the “One Region” model (see section 4.2.2.1), which should yield the most cost-effective results,
because the publishers and subscribers choose the region that minimizes costs (and then delivery time).
For all simulations, we set the delivery time guarantee ratio to 75%.

Results and Discussion The simulation results are shown in figure 4.5. We observe in 4.5(a) that
the “All Region” approach is able to meet a delivery time bound of 140ms, while the “One Region”
approach is able to meet a delivery time bound of 168ms. The MultiPub approach is capable of achiev-
ing the same, fast delivery time as the “All Regions” approach when maxT ď 140ms. For higher
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values of maxT , the actual delivery time increases, but remains under maxT until 168ms. Starting
at 168ms, MultiPub aligns itself to the “One Region” approach. Figure 4.5(b) depicts the cloud cost
calculated as if the test workload had run for a full day on the real cloud. We observe that the fast
“All Region” approach is expensive ($107/day), whereas the “One Region” approach is 28% cheaper
($77/day). MultiPub selects the most cost-efficient approach that still meets the target delivery time.
For maxT ď 148ms, costs are as high as the “All Region” approach. Between 140ms and 168ms,
MultiPub finds a wide range of intermediate configurations that meet the delivery time constraints but
use less region servers. This is also visualized in figure 4.5(c), which plots the number of regions used
by MultiPub, and whether publications are routed between cloud servers or only direct communication
is used. Since inter-cloud links are generally faster (see measurements in subsection 4.2), MultiPub fa-
vors routed delivery even if it incurs additional forwarding costs. Eventually, MultiPub opts for direct
delivery as it is less expensive. Finally, for maxT ě 168ms, only one region is used, i.e., the cheapest
one that minimizes delivery time.

To summarize, this experiment demonstrates that MultiPub is able to generate costs savings, which
in this specific experiment reached up to 28%, while still respecting delivery time constraints. Note
that our cost numbers are for a single topic per day. Thus, overall gains over a longer period and more
topics will be significant.

4.6.3.2 Comparison Direct vs. Routed Delivery

The goal of this experiment is to show that MultiPub is able to exploit both direct and routed delivery
approaches in order to reduce delivery times and/or reduce costs. We deployed one topic T with 100
publishers and 25 subscribers in Asia, and 25 subscribers in the USA. cloud costs are again given for
a 1-day period. The delivery time guarantee ratio was set to 75%. We ran 3 separate simulations, one
with standard MultiPub, one where we allowed the solver to consider direct delivery only (MultiPub-
D), and one where the solver had to use routed delivery (MultiPub-R). Figure 4.6a shows that the
minimum reachable delivery time with “MultiPub-D” is 110ms, whereas it is 94ms with “MultiPub-
R” due to the use of optimized inter-cloud links. Therefore, for maxT ď 110ms, MultiPub uses routed
delivery in order to meet the delivery time constraint, despite the costs being higher due to the extra
inter-cloud communication (see figure 4.6b). For maxT values between 110ms and 138ms, MultiPub
selects the best approach that minimizes costs depending on the desired delivery time bound. For values
of maxT ě 138ms, MultiPub chooses the direct delivery approach with only one server, located in the
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least expensive region that minimizes delivery time. Figure 4.6c plots the number of region servers
used for all approaches, as well as symbols indicating when, for MultiPub, direct delivery and routed
delivery is used.

4.6.3.3 Localized Pub/Sub Delivery across Different Regions

Experimental Setup In some contexts, publishers and subscribers are local to a region. For instance,
in the context of a large-scale online game, players might decide to play against local players. Likewise,
a country-wide weather alert system disseminates publications that are relevant only to subscribers that
are located in the same country. In such a context, the straightforward approach is to deploy the relevant
topics only in the local geographical region where the clients are located. However, such a configuration
which would obviously yield the fastest delivery times, might not be the cheapest.

This experiment demonstrates that while MultiPub is designed with global-scale publish/subscribe
systems in mind, it can also be useful in regional-scale scenarios to optimize costs. We ran the same
experiment for four different regions: North America (EC2 region us-east-1), Europe (EC2 region
eu-west-1), Asia (EC2 region ap-northeast-1) and South America (EC2 region sa-east-1).
For each experiment on one of the regions R, 100 publishers and 100 subscribers were selected so that
they were closest from a latency point of view to region R. The delivery time guarantee ratio was set
to 95%.

Results and Discussion Figure 4.7 shows the results of the four experiments. For the North America
and Europe experiments (figures 4.7a and 4.7b), the initial configuration never changes, since those
regions have the lowest outgoing bandwidth costs (see table 4.1). For North America, delivery time
constraints as low as 50ms can be met, whereas for Europe, only 110ms can be achieved.

In the Asia experiment (figure 4.7c), delivery times of 35ms can be achieved using the cloud region
in Tokyo, but such a configuration incurs a high cost. With a relaxed delivery constraint of 80ms or
more, MultiPub discovers cheaper solutions that use different clouds, until finally, for delivery time
bounds of 145ms and above, MultiPub finds a configuration that uses a single European server (among
the cheapest regions) to serve all clients in Asia. As a result, MultiPub significantly lowers the costs,
achieving savings of 36% ($74 / day instead of $120/day).

In the South America experiment (figure 4.7d), the cost savings achieved by MultiPub are even
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Figure 4.7: Localized Pub/Sub Delivery across different regions
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more significant, since outgoing bandwidth costs in this EC2 region are the most expensive. MultiPub
can meet a delivery constraint maxT of 60ms for 95% of the publication messages at a very high
cost ($210 / day). For values of maxT ě 190ms, MultiPub determines that an alternate configuration
with servers in North America (Virginia) is suitable. In that case, costs for one day descend to $74,
representing a saving of 65%.

4.6.4 Experiments in the Cloud

In order to run real-world cloud experiments, we implemented a prototype of MultiPub on top of Dy-
namoth [53]. The publish/subscribe interface is once again provided by the open-source Redis software
[1]. Apart from demonstrating the feasibility of MultiPub, having a prototype makes it possible to run
real-world experiments in the cloud to confirm that the simulation results correspond to reality.

As described in section 2.6, real-time multiplayer online games are perfect examples of distributed
publish/subscribe systems in which message delivery time is critical to ensure fairness and playability,
as well as provide a sense of immersion. We chose to reuse the RGame game prototype created as part
of Dynamoth, which can be run with thousands of virtual players.

4.6.4.1 Experimental Setting

For logistic purposes and to limit incurred costs, we restricted our experiments to use the 3 following
EC2 regions: eu-central-1 (Frankfurt), ap-southeast-1 (Singapore) and ap-southeast-2
(Sydney). We deployed one pub/sub server (Redis) per region over one VM. Since we did not have ac-
cess to client machines across the world, we had to deploy the subscribers and publishers in the cloud
as well. We decided to distribute them over all EC2 regions on multiple VMs. In order to not get
false latency measurements, we integrated latency emulation in the clients based on the King dataset,
following an extension of the method described in Dynamoth (section 3.6.2).

On the client, the MultiPub library delays all received publications upon reception for a certain
amount of time before delivering them to the application layer. For that to work, a virtual king node is
assigned to every client, and the specific latency value between this virtual king node and every other
client (also a virtual king node) in every region is taken into consideration. For communications in the
same cloud, the delay is negligible, but for inter-cloud communications, a real physical delay applies,
as shown in table 4.2. Thus, when it comes to emulating inter-cloud latencies, special care is taken to
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consider the real physical delay that may apply.

4.6.4.2 Medium-size Multiplayer Game

Experimental Setup The goal of this experiment is to assess the suitability of using MultiPub for
update dissemination in a real-world, medium-size multiplayer game setting with players distributed
over several locations. According to [40], first-person shooters and racing games require very low
latency (<100ms), but 3rd person role playing games (RPG) or sport games, e.g., Madden NHL [81],
can tolerate higher latency (<500ms). Finally, real-time strategy games (RTS) such as Warcraft can
tolerate even higher latencies. Since it is currently not possible to achieve 100ms latencies world-wide,
we set the parameters of the experiment to fit RPG, sport and RTS games.

Another important goal was to assess the capability of the MultiPub Controller to adjust dynami-
cally to varying load conditions. Therefore, using a single topic PositionUpdate, we initially started
RGame with 32 players simulated to be close to cloud region Frankfurt (region eu-central-1). For
the needs of our experiments, those clients were therefore deployed on servers in the Frankfurt cloud.
Players are both publishers and subscribers, as they publish position updates on average once per sec-
ond, and they want to receive the position updates of the other players. Then, over time, 32 additional
players located close to Sydney (region ap-southeast-2), and thus, installed on the Sydney cloud,
join the game (8 at a time) to end up with a game of 64 players total. We ran the experiment 3 times with
different maximum delivery time bounds: maxT “ 225ms, maxT “ 300ms and maxT “ 500ms. All
experiments used a ratio of 95%. To validate our simulator, we also ran the same 3 experiments with
MultiPubSimulator.

Results and Discussion Figures 4.8a and 4.8b compare the measured and simulated achieved de-
livery times, figure 4.8c plots the percentage of achieved cost savings when increasing maximum ac-
ceptable delivery time, and figure 4.8d shows which configurations are being used depending on the
number of players close to Sydney. We observe that initially, for all configurations of maxT , Multi-
Pub uses only the one region in Frankfurt, which is the least expensive (0.09$ per outgoing GB). For
maxT “ 500, MultiPub never needs to change the initial configuration, since the use of a server in
cloud region Frankfurt allows for delivery times to remain below 500ms at all times. For maxT “ 300,
upon reaching 16 players in Sydney, MultiPub selects a configuration in which the game topic is han-
dled by 2 cloud regions: Frankfurt and Singapore (ap-southeast-1). Even though the clients are
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Figure 4.8: Medium-size Multiplayer Game in the Cloud Results
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located in Sydney, Singapore is chosen because it is cheaper (0.12$ per outgoing GB instead of 0.14$),
and 95% of delivery times remain below 300ms. To guarantee maxT “ 225 with already 8 players
located in Sydney, MultiPub must opt for a configuration with regions Franfkurt and Sydney, at the
price of additional costs.

Note that the simulated delivery times in figure 4.8b correspond quite closely to the real-world
delivery times that were collected from the cloud experiment runs. Also, the cost savings obtained in
the cloud are slightly higher than the ones calculated in the simulation. This is due to the fact that in
the cloud setting, additional costs were incurred because of the experimental data collection process,
in order to obtain experimental results. In our implementation, we did not optimize this overhead and
detailed information was sent from the region managers to the controller. Instead, the region managers
can be optimized to send more aggregated information in order to reduce message overhead. Finally,
the achieved savings do not appear to be very high in this specific experiment. This is due to the fact
that most of the clients are in Frankfurt, which is the cheapest region. Other setups could lead to more
important savings, as demonstrated by our simulation results.

4.6.5 Runtime Analysis

4.6.5.1 Experimental Setup

Determining the optimal solution is, as mentioned before, exponential with the number of servers. Fur-
thermore, it is linear with the number of messages that have to be considered as we those messages
have to be sorted, in order to determine the delivery percentile. In turn, the number of messages in-
creases linear with the number of subscribers. Assuming that all publishers publish at the same rate,
the number of messages is also linear with the number of publishers.

Figure 4.9 shows four experiments. The first experiment looks at the execution time for a 10-region
system when both the number of publishers and subscribers increase to up to 100 (each publisher
publishing once every second), showing that at 100 subscribers and 100 publishers, it takes a bit less
than two minutes to determine the optimal configuration. Similar results are observed when we fix the
number of subscribers to 10 and increase the number of publishers to 1000 (figure 4.9b), or when we
fix the number of publishers to 10 and increase the number of subscribers to 1000 (figure 4.9c).
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4.6.5.2 Results and Discussion

Figure 4.9d shows the exponential influence of the number of regions by depicting the runtime of the
solver for 100 subscribers and publishers when increasing the number of regions. With 5 available
regions, it took the solver only 3 seconds to find the optimal configuration, that is, around 95% less
time than with 10 regions. Considering only five regions, by extrapolation, a configuration for a system
with 10 publishers and 35,000 subscribers could be determined in less than two minutes.

In summary, these performance measurements confirm that the optimization problem that Multi-
Pub needs to solve can easily be solved for realistic settings. Our unoptimized, brute-force Python
implementation can already handle a large amount of users, which is largely sufficient to adjust to load
changes due to the arrival of new publishers and/or subscribers for any given topic.

4.6.5.3 Algorithmic Optimizations

To support larger scenarios, a more optimized implementation could be written. Also, different topics
can be solved in parallel, as they are independent. To support extra-large scale settings, a defendable
way to reduce solve time is to only consider a subset of cloud regions, which as we have seen, has an
exponential impact on the search space. Simple pruning can remove expensive regions with no or very
few subscribers, or regions very far from clients, for instance. Also, as the number of publishers and/or
subscribers increases, clustering techniques could be employed in order to group clients that are close
to each other, and replace them with a virtual client, in order to scale the problem to be considered.

However, past a certain point, clustering techniques can have their own scalability limits in the con-
text of a linear optimization problem. Heuristic approaches could be designed to come up with a very
good approximation of the best solution in a smaller amount of time. Another interesting optimization
would be to follow a non-batch approach, such as an online algorithm, in which the solver would be
able to generate solutions as it receives input (eg. changes to latency measurements or changes to the
subscribers and publishers). Such approaches would definitely make sense in a highly dynamic con-
text, such as in a game, as players frequently move around, thus modifying the set of subscribers and
publishers for a large amount of topics on a recurrent basis. An online algorithm could then generate
configurations faster after changes occur, and potentially without having to continuously reprocess the
whole problem. Such algorithmic optimizations are definitely considered for future work.
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4.7 MultiPub Conclusion

We presented MultiPub, a cost-minimizing topic-based pub/sub cloud middleware for latency-constrai-
ned applications with clients that are potentially distributed all over the globe that require strict delivery
time bounds. Using the cloud brings many advantages, such as scalability and flexibility, but can also
be costly due to the high outgoing bandwidth costs. MultiPub optimizes the routing of publications
by taking advantage of the fact that cloud providers have resources in several geographical locations.
Users of the service can define a delivery time constraint on any given topic, and MultiPub selects the
optimal allocation of resources that respects the constraint while minimizing cost.

Part of our contributions consisted in defining a rich, realistic data model that notably takes into
consideration the latencies between all cloud regions (on Amazon EC2) and between clients of the
system (publishers and subscribers), as well as the bandwidth-related costs of all cloud regions. The
model was generated using a combination of measurements and data from the open King dataset.

MultiPub makes use of this model to compute an optimal combination of cloud regions that meet
the predefined delivery time constraints while minimizing cloud-related costs. More precisely, depend-
ing on the intrinsic characteristics of a given topic, MultiPub can assign the topic to one or multiple
cloud regions, in order to reduce costs and delivery time. MultiPub also proposes two delivery methods
and is able to select the most appropriate. MultiPub proposes a rich architectural model that integrates
distributed data collection and analysis, as well as live reconfiguration, upon finding a more appropri-
ate configuration, in order to adapt to highly-changing environments. The analysis and reconfiguration
process is totally transparent to the user, as it was the case with Dynamoth. Furthermore, MultiPub
runs on top of any existing unmodified topic-based pub/sub middleware, such as Redis, that we used in
our experiments. As such, it can also be combined with load-balancing approaches that were proposed
for addressing heavy load conditions in single-region pub/sub systems, e.g., Dynamoth [53].

In order to evaluate MultiPub, we built a full simulation package, as well as a real cloud imple-
mentation based on the Dynamoth platform. Both implementations make use of our data model. The
simulator was used to evaluate our model under various conditions, while the cloud implementation
was used to assess that MultiPub performs as expected in a real cloud setting on several regions of the
Amazon EC2 cloud. Experiments revealed that MultiPub was able to significantly reduce cloud-related
costs, while meeting delivery time bounds, compared to static pub/sub optimization approaches.
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5
DynFilter: Limiting Bandwidth of Online Games

using Adaptive Pub/Sub Message Filtering

Chapters 3 and 4 respectively presented our Dynamoth and MultiPub contributions to research in the
field of scalable, reliable and optimized topic-based publish/subscribe systems. Dynamoth notably
provided a scalable and reliable topic-based cloud platform, and MultiPub provided a cost-optimizing
topic-based publish/subscribe system for latency-critical applications on a global scale.

In a similar spirit as Dynamoth and MultiPub, DynFilter [54] also proposes an optimizing pub-
lish/subscribe platform for the cloud, but tailored for the specific context of multiplayer games which
typically require fast delivery times while generating high throughput and high publication frequency.
While Dynamoth and MultiPub are more abstract and provide a general purpose publish-subscribe
platform, their design was still motivated by the domain of online gaming, as many of the various
experiments that were run on such systems were run in the context of a (massive) multiplayer game
application (RGame). In addition, the fact that such systems were designed for latency-constrained
applications in mind makes then perfect candidate for gaming-related applications.

DynFilter proposes a game-oriented topic-based publish/subscribe framework that aims at restrict-
ing bandwidth usage in such systems/games, in order to meet predefined bandwidth quotas, while min-
imizing the potential impacts on playability. This is accomplished by filtering (reducing the amount
of) update messages exchanged between entities located far away from each other in the virtual game
world. The rationale behind DynFilter is that it can be acceptable, considering a given player P , to
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discard some of the state update messages transmitted from entities located away from P , without
compromising playability from P ’s perspective. Our observations revealed that transparently discard-
ing a portion of the state update messages can lead to significant reductions in bandwidth usage, and
can lead to the following goals of DynFilter: (1) respecting a predefined cloud-based bandwidth-related
budget and (2) preventing the game from becoming unplayable due to a bandwidth use that would be
above the allocated resources.

DynFilter internally follows a tile-based interest management approach as described in section
2.6.2.2 and therefore maps game regions to tiles and players as publishers and subscribers to topics
corresponding to relevant tiles (section 2.6.2.3). Our DynFilter implementation reuses Dynamoth in-
ternally (it is built as an extension on top of Dynamoth), and the game model is implemented as an
extension to our RGame prototype game (DynGame) which was first developed for Dynamoth and
later reused in MultiPub.

We consider that our work done on DynFilter and MultiPub is related and also complementary:
while MultiPub aims at meeting latency constraints while optimizing costs, DynFilter aims at meeting
bandwidth quotas, while ensuring acceptable performance/playability. Note that in the context of cloud
systems, bandwidth usage correlates with cloud-incurred costs. Thus, both contributions have different
optimization goals and strategies and one could see how both approaches could be used in different
contexts, but nothing prevents one from integrating both approaches in the same context; ie. a game
application could benefit at the same time from DynFilter’s bandwidth reduction techniques while
supporting global-scale applications and imposing delivery constraints on critical topics. Costs savings
could then be combined: reduced bandwidth usage translates to less costs, combined with a strategical,
cost-efficient assignation of workloads (topics) to cloud regions.

On the other hand, Dynamoth is also related as it can be leveraged to provide cloud scalability that
applications using DynFilter and MultiPub might need.

5.1 DynFilter’s Main Contributions

DynFilter notably provides the following contributions:

‚ Game operators can define a maximum target outgoing bandwidth that they are willing to allocate
over a given window as well as a maximum filtering (degradation of quality) that is allowed for
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each tile.

‚ Filtering is only applied to subscribers on remote tiles: state updates from players/entities located
in the same tile (or group of tiles) are always delivered, which means that any given player will
receive all state updates from nearby players.

‚ A load analyzer module continuously monitors the pub/sub server with minimal overhead and
analyzes the bandwidth that has been used in the current window. If needed, the load optimizer

applies adaptive message filtering to reduce the amount of messages that need to be disseminated,
in order to stay below the target bandwidth.

‚ Our algorithmic model automatically adapts filtering for each game tile based on the number of
subscribers in the tile. Filtering is continuously recomputed.

‚ DynFilter is completely transparent and non-obtrusive to game players.

5.2 DynFilter Architecture

5.2.1 Tile-based Area-of-Interest and Message Delivery

As mentioned, in DynFilter, the game world is divided into a set of interconnected square tiles1. As-
suming a world grid made of X columns and Y rows, we have a total of XY tiles labeled as follows:
Tx,y where x P t0, . . . , X ´ 1u and y P t0, . . . , Y ´ 1u. Considering that a given player P is located
in one and only one tile Txp,yp at any given time, we define the subscription range Z as how many tiles
around the player’s current tile P subscribes to in order to receive updates from other players and in-
game entities. Formally, P receives updates in all surrounding tiles Tx,y|x P txp´Z, . . . , xp`Zu, y P
typ ´ Z, . . . , yp ` Zu (within a distance of Z).

DynFilter makes sure that P always receives all state updates in it’s own tile (Txp,yp). For surround-
ing tiles, state updates can be filtered if needed. The impact of such filtering is greatly mitigated by the
fact that players and entities located within these tiles are located farther apart from the player. Games
typically make use of dead reckoning techniques [105, 83] to interpolate player positions between
state updates. The inaccuracies in on-screen player positions (difference between dead-reckoned posi-

1Square tiles have been chosen because they simplify our spatial model. However, our model can easily be adapted
to other tile configurations. For instance, if using triangular tiles, one could simply index each tile, and transform the
two-dimensional tiling model proposed into a one-dimensional model.
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Figure 5.1: DynFilter Tiles Example

tion and real position) will appear smaller for entities located farther away. Figure 5.1 gives an example
of which tiles a given player located in the dark tile will be subscribing to (in that case, Z “ 2): the
black tile represents a subscription to it’s own tile (unfiltered) and the grey tiles represent a subscription
to surrounding tiles (can be filtered). Players are denoted as small dots.

All game-related messages are delivered using a topic-based publish/subscribe middleware, such
as Redis. In order to provide scalability, one could reuse Dynamoth as it also provides a topic-based
pub/sub interface. Alternatively, if the game is run in a global-scale setting with players distributed
throughout the world, then MultiPub would also be a good candidate.

5.2.2 Architectural Components

The DynFilter architecture is made of several distributed components. A high-level overview is pre-
sented in figure 5.2, in a cloud setting. A virtual machine (VM_Server) contains an instance of the
pub/sub middleware, coupled with a data collector component whose goal is to collect real-time data
about all topics that currently exist on the pub/sub server, in a non-obtrusive way. The data collector
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Figure 5.2: DynFilter Architecture Overview

component is conceptually similar to Dynamoth’s local load analyzer (section 3.3.1) and MultiPub’s
region manager (section 4.3.3) components.

Aggregated data is periodically transmitted to the load analyzer module, which is located on a
different VM, but in the same cloud to reduce bandwidth overhead and costs (VM_LoadOptimizing).
The load analyzer module determines if the allocated bandwidth quota for the current time period
will be respected, based on previous bandwidth use and based on aggregate data received by the data

collector (please refer to section 5.3.1). A load optimizer module then computes a new filtering matrix

(described in section 5.3.2), which is transmitted to the message filter component, located on the same
VM as the pub/sub server. The filtering matrix, which will be discussed later, is used to inhibit the
delivery of some of the publications.
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5.2.3 Message Filtering

In order to implement the described filtering behavior, DynFilter generates two pub/sub topics on the
pub/sub server for each tile Tx,y, as follows: (1) TH

x,y (high-frequency, without filtering) and TL
x,y (low-

frequency, where filtering can occur). A given player P in tile Txp,yp subscribes to topic TH
xp,yp (receive

all state updates in it’s own tile) and subscribes to topics TL
x,y|x P txp ´ Z, . . . , xp ` Zuzxp, y P typ ´

Z, . . . , yp`Zuzyp (receive potentially filtered updates for all surrounding tiles). P always publishes to
TH
xp,yp . Therefore, no game entity or player directly publishes to any low-frequency TL

x,y topic.

DynFilter’s message filter component is in charge of forwarding some or all of the publications
from high-frequency topics (TH

x,y) to low-frequency topics (TL
x,y). It accomplishes that goal using the

latest available filtering matrix Fx,y that has been computed by the cost optimizer. In our model, Fx,y

is a 2-dimensional array that contains a filtering ratio for each tile Tx,y, between 0.0 (all messages are
forwarded to TL

x,y - no filtering) and 1.0 (no message is delivered - this is not desirable so in practice,
we provide an upper bound). The computation of Fx,y is described in section 5.3.2.

The message filter component subscribes to all high-frequency tile topics (TH
x,y), which does not

incur additional network overhead since it is local; that is, on the same machine as the pub/sub server.
For each high-frequency update at tile Tx0,y0 , it does the following:

1. Obtain the filtering ratio Fx0,y0 from the filtering matrix Fx,y;

2. Generate a random floating-point number between 0 and 1;

3. If the generated number is greater than Fxo,yo then

4. Forward the publication to TL
x0,y0

(if the generated number is smaller than Fxo,y0 , then the message
is not forwarded; thus, subscribers of TL

x0,y0
will not receive it).

5.2.4 N-Layered Message Filtering

The DynFilter architecture is two-layered: the first layer (high-frequency) ensures full delivery of all
messages and the second layer might allow for partial delivery. While it is possible to alter the various
parameters such as the subscription range Z and the size of the tiles, for some games requiring finer
granularity, DynFilter could be extended to introduce additional layers of message filtering to allow
for a partial degradation in the amount of state updates received as the distance grows. When playing
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at very high resolutions on large displays, players might want to be able to see objects located very far
away. N-Layered filtering could be used to allow players to view remote objects at a very low update
frequency. Such an improvement is left as future work.

5.3 Cost Analysis and Optimization

The main goal of the DynFilter load optimization process is to make sure that the allocated bandwidth
quota for the current time period is respected by filtering game update messages sent to subscribers
of low-frequency tile topics. The following subsections describe in a detailed fashion how the current
load is analyzed and how the filtering matrix Fx,y is updated.

5.3.1 Load Model & Analyzing

DynFilter defines the concepts of a time unit and a time period. A bandwidth quota (Bquota) is allocated
for a given time period (10 minutes in our experiments) and is made of tmax time units (20 seconds in
our experiments). Bquota is defined by the game operator (possibly by taking into account the outgoing
cloud bandwidth costs or the capabilities of it’s current infrastructure). At every time unit t, the band-
width that has been consumed since the beginning of the current period (Bused) is evaluated by the load
analyzer. The load analyzer then computes the bandwidth that is remaining until the end of the period
(equation 5.1).

Bremaining “ Bquota ´ Bused (5.1)

From the remaining bandwidth, a target bandwidth allocation is then computed for the next unit,
which is the average amount of bandwidth that the game should consume in all remaining time units
throughout the end of the period, in order to respect Bquota. It is defined at equation 5.2.

Btarget “ Bremaining{ptmax ´ tq (5.2)

The next step is to determine if, by consuming bandwidth at the current rate, the game would go
over Bquota. To do so, the load analyzer first considers the bandwidth that has been consumed in the

119



5.3 Cost Analysis and Optimization

last unit (Bprev)2. If Bprev ď Btarget, then filtering can be reduced or canceled if it is no longer needed,
since we are currently using less bandwidth than allowed. However, if Bprev ą Btarget, then we are
currently using too much bandwidth, and we need to lower bandwidth use. We define Bremove as the
bandwidth that we need to remove in the next time unit as follows: Bremove “ Bprev ´ Btarget. By
knowing how much bandwidth we need to remove, the load optimizer then computes an appropriate
filtering matrix, as explained at the following section.

5.3.2 Load Optimization

The filtering ratio Fx,y for tile Tx,y was previously defined as the ratio of messages that should not
be delivered to TL

x,y. In this section, we describe how this ratio is computed, with two approaches: (1)
trivial filtering, where the ratio is the same for all tiles and (2) DynFilter filtering, where a different
ratio is computed for each tile. The latter takes into consideration the density (number of players) in
the tile.

5.3.2.1 Trivial filtering

Assuming for simplicity that there was no filtering in the previous time unit, by knowing the number
of bytes to remove (Bremove) as well as the number of bytes consumed in the previous time unit (Bprev),
we can compute one global filtering ratio F for all tiles as follows: F “ Bremove

Bprev
. This holds if there

was no prior filtering in place. If there was already filtering in place, then we need to compute an
extrapolation of the bandwidth that would have been consumed in all low-frequency tiles over the last
unit if no filtering was in place, by inverting the effects of the filtering already in place, following a
similar process as described in equation 5.3. We would then obtain an extrapolated version of Bremove

and Bprev which would yield an accurate computation of F .

We want to go beyond trivial filtering and consider the specifics of each tile as per the following
rationale: filtering can be stronger on tiles with many players since the updates of any individual player
will be less apparent in a crowd. In addition, players usually closely follow only a limited amount
of players at the same time and pay less attention to the others [21, 104]. On the contrary, filtering
should be lower on tiles with fewer players. Increasing the filtering ratio of dense tiles also has the

2We initially considered using the averaged bandwidth over all time units since the beginning of the period. We found
out that this approach worked well only if the bandwidth did not vary too much. By taking the bandwidth over the last time
unit only, we are able to react quickly to sudden variations.
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added benefit of greater bandwidth reductions. DynFilter proposes an algorithm to compute a varying
filtering ratio for each tile while still respecting bandwidth quotas.

5.3.2.2 DynFilter filtering

In order to obtain a filtering ratio for each tile Tx,y, we need to determine how many bytes we should
save for every low-frequency TL

x,y tile topic. The idea is that the number of bytes that we should remove

from each tile topic should be proportional to the total outgoing bytes of that tile for the previous unit.
However, we multiply the number of bytes to be removed by a density factor Dx,y that is logarithmic
to the number of subscribers in that tile, to take the number of subscribers in the tile into account.

Let Sx,y be the number of subscribers in Tx,y, BH
x,y the outgoing bandwidth (over the previous

time unit) of topic TH
x,y and BL

x,y the outgoing bandwidth of TL
x,y. Again, as it was the case with trivial

filtering, BL
x,y depends on the filtering ratio Fx,y used in the last time unit. In order to get accurate

bandwidth computations, we define B˚Lx,y as the extrapolated outgoing bandwidth, which is a projected
value of TL

x,y without the effects of filtering (equation 5.3).

B˚Lx,y “
BL

x,y

1´ Fx,y

(5.3)

For every tile, we compute the density factor Dx,y as follows: Dx,y “ log2 Sx,y. We then compute
the weight factor for tile Tx,y by multiplying the total extrapolated bandwidth with the density factor
(equation 5.4).

Wx,y “ pB
H
x,y `B

˚L
x,yq ¨Dx,y (5.4)

We define the sum of the weight factors as follows: WT “
ř

Wx,y. For each tile Tx,y, we can then
compute how many bytes we need to remove from topic TL

x,y (equation 5.5).

Qx,y “ pWx,y{WT q ¨Bremove (5.5)

By knowing Qx,y, we compute the filtering ratio for tile Tx,y using equation 5.6 (ratio of bytes to
remove to the number of extrapolated outgoing bytes that flowed through TL

x,y over the last time unit).
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Fx,y “
Qx,y

B˚Lx,y
(5.6)

Note that a maximum value can be set for Fx,y so that we can ensure that a minimal ratio of state
update messages will be forwarded (in our experiments, it is set to 0.75) so at least 25% of the state
update messages will be sent across all tiles.

The load optimizer then transmits the matrix of all filtering ratios to the message filter component
that applies it.

5.4 Experiments

5.4.1 Implementation and Experimental Setup

We implemented DynFilter in Java on top of Dynamoth. Topic-based publish/subscribe is once again
provided by unmodified Redis middleware. We ran our experiments on DynGame, which is based
on the RGame prototype game skeleton developed for Dynamoth. As it was the case with RGame,
DynGame supports a large amount of players that randomly move and uses square tiles. Publications
and subscriptions are made according to the DynFilter model.

Experiments have been run in the cloud over a set of 20 Amazon EC2 instances: one m3.medium

instance for the pub/sub server, data collector and message filter components; one m3.medium instance
for the load analyzer and the load optimizer; one t2.micro instance for experimental data collection
and 17 t2.micro instances to run our game clients. We determined that we were safely able to run
15 players per instance, up to a maximum of ~250 players. The decision to run server and clients
components in the same cloud was motivated by the fact that intra-cloud bandwidth was free. While
our implementation has been designed to support multiple pub/sub servers, we decided to limit our
experiments to only one pub/sub server for simplicity reasons.

We considered a subscription range Z “ 2 (players subscribe to 25 surrounding tiles, please refer
to figure 5.1), except for players located near edges, who subscribed to less tiles. The subscription to
the central tile is at high-frequency (TH

x,y) (all messages are received) and the subscriptions to the other
tiles is at low-frequency (TL

x,y) (messages can be dropped).
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5.4.2 Experiment 1: FPS Game / Scalability

5.4.2.1 Description

The goal of this experiment was to assess the scalability of DynFilter and its bandwidth-limiting capa-
bilities in the context of a FPS-like game with many players. A typical FPS has a limited amount of
players because of the high-bandwidth that is needed to support the high frequency of updates and the
vision range for all players. For instance, WatchMen, which was based on a modified version of Quake
3, supported up to 48 players in the same game [104] (the original Quake 3 supported only 16 players).

We configured a virtual map with up to 150 players and 100 tiles (10x10), with Z “ 2. That means
that any player would be able to view up to 25% of the map at any given time, which makes sense
since FPS maps are generally small-scale compared to other types of games. As mentioned in the
introduction, because of the fast-paced nature of such games, players optimally receive up to 20 state
updates per second.

We progressively injected up to 150 players in the game, then reduced to 50 players, then increased
again up to 125. We allocated a bandwidth threshold of 8000 Mb for the duration of the period (10
minutes), with units of 20 seconds (load analyzing and optimizing occurred every 20 seconds).

5.4.2.2 Results

Figure 5.3 details our results for the FPS experiment. On figures 5.3a and 5.3b, until about 3 minutes,
we can see that no filtering occurred on low-frequency tile topics (all state updates were transmitted).
Afterwards, due to the highly increasing load caused by the large amount of players, filtering starts
to occur. The frequency of state updates received on low-frequency tile topics progressively drops
until it reaches an average of 5 updates per second, which is the minimum frequency allowed for
this experiment. Despite having a reduced frequency, we claim that playability was not sacrificed since
updates were still received at least every 200 ms, and DynFilter takes special take to ensure that filtering
only applies to players being located far apart (in different tiles). Thus, for players in the same tiles,
the full frequency of updates (20 updates per second) was maintained. In addition, dead reckoning can
compensate for some missing updates.

Afterwards, we observe that as the number of players starts to shrink (at about 4 minutes), the
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(b) State Updates per Second

Figure 5.3: FPS Game / Scalability Experiment Results
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(a) t “ 2.3; F̂ “ 0.14 (b) t “ 4; F̂ “ 0.73 (c) t “ 8.7; F̂ “ 0.54

Figure 5.4: Filtering Ratio Heat Map / FPS Game

number of updates per second start to raise again until it reaches 20, which means that no filtering
occurs once again - all state update messages are delivered to low-frequency tile topics. Then, as the
number of players raise again above a certain threshold and up to 125, the number of updates per second
starts to shrink again down to ~8 updates per second, which is a best compromise on degradation that
will ultimately lead to a total bandwidth use of 8000 Mb at the end of our period; thus, respecting our
predefined bandwidth quota. Overall, 8000 Mb have been used instead of 14000 Mb, thus representing
a bandwidth saving of 43%.

Figure 5.4 illustrates the averaged filtering ratio (F̂ , which is the filtering ratio that would be
equivalent to the current global reduction in bandwidth if all tiles had the same filtering ratio; that
is, using the trivial filtering approach described in section 5.3.2.1) for all 100 tiles, at time snapshots
t “ 2.3, t “ 4 and t “ 8.7. White means that no filtering is in effect for a given tile (or no player is
in that tile), dark grey means that filtering is at up to 75% and intermediate shades of grey illustrate
an intermediate filtering ratio. We notice that as the number of players increases, the filtering ratios
increase in roughly the same way across the whole game map (except for tiles with no players) since
the density of players was roughly similar in this experiment.
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5.4.3 Experiment 2: MMO Game with Flocking

5.4.3.1 Description

The goal of this experiment was to assess how DynFilter was able to handle the case of flocking within
a medium-scale MMO game. Flocking refers to situations were many players gather towards the same
location on the map, which can put a strain on the system since the number of state updates to be
transmitted in those hot spots grows quadratically.

Since MMOs are slower-paced games compared to FPS games, we settled for an update rate of
4 updates per second, which is a realistic assumption based on an empirical observation of popular
games. Also, since game worlds are much larger, we opted for 400 tiles (20x20). Thus, with a sub-
scription span of 25 tiles, players only see a maximum of 6.2% of the map. We allocated a bandwidth
quota of 10000 Mb for the 10-minutes period. We quickly injected 250 players in the map (which in
itself would not go above the quota; thus, would not trigger the use of filtering). In this experiment,
whenever a given player is flocking, it moves quickly towards the center 4x4 tiles of the map and
remains within those tiles.

After injecting 250 players, we slowly increased the flocking ratio (ψ) from 0 to 0.5, which meant
that up to 50% of the players were eventually located in the 16 centric tiles, thus greatly increas-
ing player density and the number of messages that the pub/sub server had to deliver (near-quadratic
growth).

5.4.3.2 Results

Figure 5.6 describe our results for the MMOG experiment. At time t “ 1, ψ slowly starts to increase.
After 3 minutes, when ψ reaches ~30%, DynFilter starts applying filtering in order to reduce the amount
of messages that need to be transmitted and thus, the bandwidth use. In figure 5.5b, we observe that
the average number of state updates per second for low-frequency tile topics starts to reduce until it
reaches 1 (minimum allowed in this experiment), in order to compensate for the drastic increase of
bandwidth. At t “ 6, ψ slowly starts to decrease (players stop flocking and slowly move elsewhere to
a random location anywhere in the map). In reaction to the reduction in bandwidth use, the average
number of state updates per second starts growing again until it reaches 4 (low-frequency tile topic
filtering disabled).

126



5.4 Experiments

� � � � � � � � 	 � ��
�

���

���

���

���

���

���

���

�

����

����

����

	���

�����

�����

�����

�����

�	���

�����
������������������
���������������� ��!��"�
#$��������
���������������� ��!��"�%��
#$��������

���������%����

�
��
�
�
��
�
��
�
��
�

��
��
���
��
�
�
�
��
��
 
��
�
&
�

(a) Flocking Ratio (ψ) and Total Outgoing Bandwidth

� � � � � � � � 	 � ��
�

���

���

���

���

���

���

���

�

���

�

���

�

���

�

���

�

���
������������������
'(����� �)�%* �����+����

���������%����

�
��
�
�
��
�
��
�
��
�

,
��
��
�%
*
 
�
��
�
�*
�
��
�
�
�
�
�
 

(b) State Updates per Second

Figure 5.5: MMOG Game Experiment Results

(a) t “ 3.5; ψ “ 0.21 (b) t “ 6; ψ “ 0.50 (c) t “ 7.3; ψ “ 0.15

Figure 5.6: Filtering Ratio Heat Map / MMOG Game
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At the end of the quota, a bit less than 10000 Mb were used since in the last minutes, we transmitted
messages at the same rate as for high-frequency tile topics, which led to using less than the allowed
quota. Overall, DynFilter was able to save 38% of the bandwidth.

Figure 5.6 shows a snapshot of the distribution of the filtering ratios across all tiles. At time t “ 3.5,
when flocking slowly starts to happen; the load optimizer starts increasing filtering ratios globally with
a small emphasis on the center tiles. At time t “ 6, filtering gets more important and really more
concentrated in the centric of the map. At time t “ 7.3, when flocking is being reduced, we observe
that flocking ratios in the centric tiles gets less emphasized. This figure showed that DynFilter was able
to adjust it’s filtering based on the density of the tiles, in order to ensure that tiles with a lower amount
of players would keep sending updates at a higher frequency despite the overall reduction in bandwidth,
to account for the fact that players are more likely to notice individual players in lower-density tiles
compared to higher-density tiles.

5.5 DynFilter Conclusions

In this chapter, we proposed DynFilter, a middleware designed to adaptively filter game state update
messages in order to limit bandwidth use within a game to a predefined threshold. A major contribution
is that our platform does per-tile filtering in order to adjust filtering levels to the number of players in
each tile. We ran experiments in the context of FPS games with a high-frequency of updates and in the
context of MMOGs with flocking. In both cases, DynFilter was correctly able to limit bandwidth use
while maintaining the normal flow of the gameplay.
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6
Dynamoth and Other Tools from a Software

Engineering Perspective

The previous chapters described the more research-oriented parts of this thesis: namely our Dynamoth
(chapter 3), MultiPub (chapter 4) and DynFilter (chapter 5) projects. These chapters described the the-
oretical and experimental aspects of our contributions. In order to run all the experiments described in
this thesis, we developed solid implementations of the various models as well as appropriate infras-
tructure support tools, which proved to be challenging tasks. For that matter, we decided to describe
these software systems from an implementation and software engineering perspective in the current
chapter, as an additional contribution to this thesis.

The Dynamoth Platform, which is a full implementation of the Dynamoth system described in
chapter 3, is a major contribution to this thesis. The implementation was designed to be faithful to the
model, and flexible from a software engineering standpoint. As a result, it was very easy to extend
the Dynamoth platform to support MultiPub and DynFilter. The Dynamoth platform was used to run
experiments in cloud-like environments, such as on a pool of over 80 lab machines from the McGill
School of Computer Science, as well as in real cloud environments, such as the public Amazon EC2
cloud. The Dynamoth platform is described in section 6.1.

In addition, running large-scale experiments such as our various game-related experiments that
we ran in the context of our different projects in a cloud setting constituted major challenges. As an
additional contribution to this thesis, I developed a set of tools to assist in running highly distributed
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experiments with hundreds/thousands of nodes in the cloud or in cloud-like environments. These tools
are described in section 6.2

Finally, the last section (6.3) describes in more details our MultiPubSimulator tool that we
developed to evaluate our MultiPub system, in combination with our real implementation built on top
of Dynamoth.

6.1 Dynamoth Platform

Our Dynamoth platform is inspired by and is built on top of the Mammoth networking infrastructure.
In fact, it was originally built as a network engine, living within Mammoth, and called RPub. As such,
it relies on a limited number of sub-components of Mammoth, but since Mammoth’s network engines
are pretty autonomous by design (they could be reused in other applications), the dependencies are
quite minimal. Over the last year, Dynamoth has been separated from the main Mammoth project into
a stand-alone project.

The goal of Dynamoth is to be a research tool that can be leveraged to run realistic, large-scale
experiments, in the domains of topic-based publish/subscribe systems, e.g. for research on scalability
and load balancing. It was however not designed for production-ready environments. We plan to open-
source Dynamoth in a near future for other researchers to use.

The Dynamoth codebase is made of over 150 Java classes and over 15,000 lines of code. This
section aims at presenting the core components, highlights and design choices of our Dynamoth im-
plementation, from a software engineering perspective. It also describes the main ways in which Dy-
namoth could be extended. For the sake of brevity, it is unfortunately not possible to present every
aspect of our implementation; as a result, many parts are not presented. Some areas of the source code
are however well documented, which might ease its understanding.

The following subsections describe the Dynamoth software system in detail. Section 6.1.1 gives
an overview of Mammoth, section 6.1.2 gives an overview of the software architecture and the main
packages of Dynamoth and section 6.1.3 describe the Dynamoth Client Library. Sections 6.1.4 and
6.1.5 describe the two core infrastructure components of Dynamoth, respectively the local load ana-
lyzing and dispatching framework, and the load balancing framework. Then, section 6.1.6 describes
the implementation of our prototype game RGame over Dynamoth and section 6.1.7 describe how fault
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Figure 6.1: Mammoth Game Screenshot

tolerance was integrated within Dynamoth. Finally, sections 6.1.8 and 6.1.9 respectively describe how
MultiPub and DynFilter were implemented over Dynamoth.

6.1.1 Overview of Mammoth

Mammoth is a massive multiplayer online game framework developed at McGill University. It was
designed as a research tool aiming at studying and experimenting with the various aspects of large to
massive-scale games. A screenshot of the Mammoth GUI Game Client is shown in figure 6.1. Mam-
moth is written in Java and is built on top of a modular architecture, where components loosely interact
among themselves. Mammoth’s main components notably include:

‚ a graphics (3D) engine, to manage the rendering of the game, using the JMonkey3 library;

‚ a world engine, to manage the game world and the various objects that it contains;
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‚ a set of network engines, to manage the communications between all nodes (section 6.1.1.1);

‚ a persistence engine, to persist the game state;

‚ a game engine, to manage the actual working of the game;

‚ a sound engine, to manage in-game audio;

‚ an interest manager, to perform interest-management tasks as described in section 2.6.2.2;

‚ a replication engine, to manage the assigning of object replicas to in-game nodes (players and
servers);

‚ a load-balancing engine, to balance the load between servers.

6.1.1.1 Mammoth Networking Infrastructure

A Mammoth network engine notably offers a topic-based publish/subscribe interface. Different proto-
cols can be used to implement such an interface, and as mentioned previously, Dynamoth was originally
built as a Mammoth network engine, where the core publish/subscribe engine was provided by Redis.
Note that some network engines operate using different paradigms such as peer-to-peer, but they must
still expose the topic-based publish/subscribe API calls: subscribe/unsubscribe and publish operations.

6.1.1.2 Mammoth Reactor

While it is possible to send any Java serializable object through the pub/sub interface, Mammoth also
provides a higher-level component, namely the reactor, which allows any class to register interest in
receiving incoming messages of a specific type (class). The reactor receives all network messages,
and dispatches them to appropriate listeners depending on the type of the message. While developing
Dynamoth, it made sense to reuse the Mammoth’s reactor component since it was intuitive and easy to
use.

As an example, our RGame clients periodically send state update messages of class RGameMove-
Message. A graphics engine could then register interest in receiving all such messages and could then
update the graphical display upon reception of such messages.

In essence, the reactor simply provides an abstraction that eases message processing, but is not a
mandatory component of the publish/subscribe interface.
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Figure 6.2: Main Packages of Dynamoth
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6.1.2 Dynamoth Package Hierarchy

Figure 6.2 illustrates the package hierarchy of Dynamoth. The main classes of the network engine in-
frastructure of Mammoth have been placed in the Dynamoth.Mammoth.NetworkEngine pack-
age. Under Dynamoth.Core, the Dynamoth engine (called RPubNetworkEngine1) can be found
and is the main class that developers wishing to use Dynamoth should use. Assuming that Dynamoth
servers are running, one can create an instance of the network engine and connect to the Dynamoth
infrastructure, as described at the next section (6.1.3), and perform publish/subscribe operations.

Presenting each package in a detailed fashion would be outside the scope of this thesis; as such,
the next sections present the important parts of the Dynamoth API, both client-side and server-side.
Section 6.1.3 discusses the Dynamoth Client Library, which is used mainly client-side, but also server-
side, and sections 6.1.4 and 6.1.5 describe the local load analyzing and load balancing frameworks of
Dynamoth, which are two key infrastructure components.

6.1.3 Dynamoth Client Library (DCL)

The Dynamoth Client Library (DCL) is the simple API that developers use to interact with a Dynamoth
service, hosted in a cloud environment or not. This API is available at all nodes. It is assumed that the
Dynamoth service (set of servers and other relevant components, e.g., the load balancer) are running.

Conceptually, from a developer’s standpoint, the DCL is very simple: it simply exposes the core
topic-based publish/subscribe primitives (publish, subscribe, unsubscribe), just like any other topic-
based publish/subscribe platform. In addition, it also provides connect/disconnect operations in order
to establish the connection to the Dynamoth service.

The DCL is also used server-side, as the different components that interact with the publish/sub-
scribe servers also use the same API. The next subsections describe the main highlights of the DCL, as
well as all the operations that the DCL manages behind the scene and that are transparent to consumers
of the DCL.

1RPub refers to the previous name of the engine before Dynamoth. Further refactoring will eventually be done.
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Listing 6.1: RPubClient Interface
1 p u b l i c i n t e r f a c e RPubCl i en t {
2

3 void c o n n e c t ( ) ;
4 void d i s c o n n e c t ( ) ;
5

6 boolean i s C o n n e c t e d ( ) ;
7

8 void c r e a t e C h a n n e l ( S t r i n g channelName ) ;
9

10 void p u b l i s h T o C h a n n e l ( S t r i n g channelName , RPubMessage message ) ;
11 void p u b l i s h T o C h a n n e l ( S t r i n g channelName , S t r i n g message ) ;
12

13 void s u b s c r i b e T o C h a n n e l ( f i n a l S t r i n g . . . channelName ) ;
14

15 void u n s u b s c r i b e F r o m C h a n n e l ( f i n a l S t r i n g channelName ) ;
16 }

6.1.3.1 Publish/Subscribe Interface

Dynamoth defines an abstract API that exposes the primitive topic-based publish/subscribe opera-
tions, as shown in listing 6.1, so that any pub/sub middleware can be used. This API, namely the
RPubClient API, allows one to connect to and disconnect from a publish/subscribe server, as well
as publish to, subscribe to and unsubscribe from topics on that server.

In our case, we used the Jedis library to work with Redis publish/subscribe servers. Therefore,
we implemented a concrete class (JedisRPubClient) implementing our RPubClient interface.
This class abstracts and conceals the Jedis API and offers an implementation of the RPubClient
that can be used to perform all pub/sub operations through Redis publish/subscribe servers. While
this implementation is used by default by Dynamoth, using an alternate publish/subscribe middleware
would simply involve writing a new implementation of RPubClient that would communicate with
this middleware to perform publish/subscribe operations.

6.1.3.2 Dynamoth Manager

We mentioned previously that Dynamoth employs a flat architecture between clients and servers (one
hop to transmit any given publication or subscription request). For that principle to work, the Dynamoth
clients maintain a connection to each server (thus, once instance of RPubClient for each server),
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and they must be able to resolve by themselves to which server any given operation should be sent to.

To solve that challenge, Dynamoth exposes a RPubManager interface that allows one to specify to
which RPubClient(s) any given publication or subscription should be issued2 (package Dynamoth.-
Core.Manager). The ability to support multiple clients at the same time is needed to properly im-
plement the Dynamoth replication feature.

In Lamoth [55], topics were statically assigned to servers, based on a hash of the topic name. This
technique is also used in Dynamoth to map topics to servers, if no information is defined in the plan for
such topics (see section 3.2.5.1). For Lamoth, we then defined a manager that used hashing to resolve
topic-to-server assignations (HashedRPubManager).

On the other end, Dynamoth makes use of a plan (see section 3.2.4) to resolve to which server(s)
a given topic T should map to. Thus, we created a DynamothRPubManager class which takes as
input a Plan object to resolve mappings. The Plan object contains, for each topic T , the set of servers
that should be used to process publications and subscriptions on T , as well as the replication strategy
that is being used, if replication is active for that topic. The Plan object and some helper classes which
are used to compute some operations on Plan objects, such the difference (delta) between two plans
(mostly for load balancing purposes), are located in package Dynamoth.Core.Manager.Plan.

As described previously, the load balancer is responsible for generating new Plan objects, and is
described in more details in section 6.1.5 below.

6.1.3.3 Transparent Reconfiguration

In addition to offering a topic-based publish/subscribe interface to the Dynamoth service, a key point
of the Dynamoth Client Library is that it also transparently handles the internal reconfiguration mech-
anism of Dynamoth (described in section 3.4); that is, without users of the DCL being aware of the
process. As such, when the load balancer component (described below in section 6.1.5) generates a
new plan, it is propagated lazily to the various clients in the Dynamoth system (and eagerly to the local
load analyzers). The mechanism by which publishers and subscribers are informed that they should
switch servers for any given topic T or enable/disable replication, as well as the whole bootstrapping
process, are all handled internally by the DynamothRPubManager.

2Simplified description. At a more abstract level, one can define the exact behavior that should trigger for publications
and subscription API calls.
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To perform these tasks, the DynamothRPubManager component transparently subscribes to
special system topics, and registers itself to receive specific system control messages from the reac-
tor. Upon receiving such messages, the DynamothRPubManager performs the necessary internal
changes: updating the plan and then reestablishing appropriate subscriptions.

In more details, upon receiving a new “full” plan (ChangePlanControlMessage) (this can
happen for local load analyzers, for instance, since they also reuse the DCL), the current local plan
is replaced with the new plan. For non-infrastructure clients, as the reconfiguration process stipu-
lates, clients are corrected whenever they hit the wrong server for publications and subscriptions. As
such, when that happens, they receive from the local load analyzer a ChangeChannelMapping-
ControlMessage which contains information only for the relevant topic. Upon receiving such mes-
sages, clients patch their local plan with the new partial information received. Appropriate subscrip-
tions are then properly reestablished, and future publications are then sent to the new servers, according
to the updated local plan.

Note that our DynamothRPubManager component implementation has some built-in optimiza-
tions when it comes to reestablishing subscriptions. For each topic T , the manager notably computes a
“diff” in the set of servers that should be used to process publications and subscriptions on T , between
the old and the new plan. It also handles the two replication models properly. More details are given in
the Dynamoth.Core.ShardsSelector package.

Note that all Dynamoth internal system-related messages (referred to as control messages) can be
found in package Dynamoth.Core.ControlMessages.

6.1.3.4 Latency Emulation

One feature of Dynamoth that was built for research purposes is that it allows publications to be ar-
bitrarily delayed by the DCL before being delivered to the application layer. The delay can either be
a fixed or a random amount sampled from a given dataset, e.g., as the King dataset [57] previously
described. Since in our experiments we ran our clients in the cloud as well, we used this feature to
emulate realistic latency values as if the clients were located outside the cloud.
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6.1.4 Local Load Analyzing & Dispatching Framework

In addition to publish/subscribe servers, who make use of Redis in our implementation, a Dynamoth
service includes several infrastructure components, as described in section 3.2.2 and illustrated in figure
3.1. This section discusses the local load analyzing and dispatching framework, and the next section
(6.1.5) discusses the load balancing framework.

6.1.4.1 Local Load Analyzer

As described in section 3.3.1, next to each publish/subscribe server H sits a local load analyzer (LLA)
component that is in charge of collecting detailed information on H . Our Dynamoth implementation
notably collects over a given time interval ∆t “ 1s, for each topic T :

‚ The number and list of current subscribers to T ;

‚ The number and list of current publishers to T (who published at least in the last interval ∆t);

‚ For each publisher P , we store the number of publications transmitted, as well as the total number
of incoming and outgoing bytes incurred due to the processing of all publications sent from P ,
over the last ∆t, by H . Note that the number of bytes is computed based on the size of the
publication messages.

The LLA also monitors the network interface on the machine and therefore collects the total amount of
incoming and outgoing bandwidth (this is monitored and not computed). According to our empirical
observations, notably by monitoring the CPU load of the local load analyzer, the data collection process
had only negligible impact on the performance, as all communications are done through the local,
loopback network interface.

All measurements collected by the LLA over the last interval ∆t are periodically transmitted to the
load balancer, on a dedicated topic that only the load balancer listens to and that is immutable (cannot
be reassigned during load balancing).

6.1.4.2 Hooking the LLA to the Pub/Sub Server

The question arises on how to hook LLAs to publish/subscribe servers, considering that we claim that
such servers are unmodified. Our current approach is for each LLA to subscribe to all topics on the cor-
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responding pub/sub server. In our case, Redis allows wildcard subscriptions, which makes subscribing
to all topics easy. However, as mentioned, Redis could be swapped with any other topic-based publish/-
subscribe middleware and it is not guaranteed that such middleware will support wildcard subscriptions
in the same manner as Redis.

As a fallback mechanism, we propose a scheme inspired by Mammoth [70], where subscribers
send a special “subscription” publication message on a dedicated topic before actually subscribing to
T , so that the local load analyzer can become aware of the new subscription and either start monitoring
T if this is the first subscriber, and add this new subscriber to the set of subscribers for topic T . While
heavier, this fallback mechanism has the advantage of broadening the compatibility with more pub/sub
middlewares.

Note that Dynamoth supplies a launcher that allows for automatically spawning an instance of the
Redis pub/sub middleware and launching the local load analyzer, and hooking that LLA instance to the
newly launched Redis instance.

6.1.4.3 Dispatching

As described, in addition to the local load analyzer, Dynamoth servers also comprise a dispatcher com-
ponent that is in charge of assisting the reconfiguration process (refer to section 3.4). The dispatcher
is in charge of detecting publications and subscriptions addressed to the wrong server, and informing
relevant clients of plan changes that they are not yet aware of. The dispatcher can properly carry out
this task since just like the LLA component, since it has access to the full plan as transmitted by the
load balancer.

The dispatcher also handles the temporary redirection of publications during the reconfiguration
process, as explained in section 3.4.2. This is done both for non-replicated and replicated cases.

In our Dynamoth implementation, the tasks of the dispatcher are handled by the local load analyzer.
Separating the tasks of the local load analyzer and the dispatcher would certainly be a good refactoring
and is left as future work.

Note that all classes pertaining to the local load analyzing / dispatching framework can be found
under package Dynamoth.Core.LoadAnalyzing.
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6.1.5 Load Balancing Framework

Dynamoth proposes an elaborate and rich load balancing framework that is extensible, which allows
Dynamoth developers to implement custom load balancing logic. Relevant classes are found in the
Dynamoth.Core.LoadBalancing package and subpackages. At the heart of the Dynamoth load
balancing framework is the LoadBalancer class, which is the entry point of a Dynamoth load
balancer. It notably registers to receive all measurements from all local load analyzers (through the
pub/sub interface itself), and performs aggregation of all measurements received from all LLAs. Such
measurements are then exposed through a rich API, namely the LoadEvaluation API. From that,
the rebalancing framework is invoked and determines on a periodic basis whether a new plan should
be generated.

Note that for load balancing to be active, an instance of the load balancer must be launched. Upon
launching, the load balancer automatically connects to the Dynamoth service and registers itself as the
active load balancer. Remark that the Dynamoth load balancer is an optional component: without it,
the Dynamoth system will still be functional, but no new plans will be generated. In the absence of the
load balancer, the local load analyzers would then send transmit their measurements to a topic with no
subscriber.

Listing 6.2: LoadEvaluation API
1 p u b l i c i n t e r f a c e L o a d E v a l u a t o r ex tends S e r i a l i z a b l e {
2 Set < RPubCl i en t Id > g e t R P u b C l i e n t s ( ) ;
3 Set < S t r i n g > g e t C l i e n t C h a n n e l s ( R P u b C l i e n t I d c l i e n t ) ;
4 i n t g e t C l i e n t C h a n n e l S u b s c r i b e r s ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l ) ;
5 i n t g e t C l i e n t C h a n n e l P u b l i s h e r s ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l ) ;
6 Set <RPubNetworkID > g e t C l i e n t C h a n n e l S u b s c r i b e r L i s t ( R P u b C l i e n t I d c l i e n t ,

S t r i n g c h a n n e l ) ;
7 Set <RPubNetworkID > g e t C l i e n t C h a n n e l P u b l i s h e r L i s t ( R P u b C l i e n t I d c l i e n t ,

S t r i n g c h a n n e l ) ;
8 i n t g e t C l i e n t C h a n n e l P u b l i s h e r P u b l i c a t i o n s ( R P u b C l i e n t I d c l i e n t , S t r i n g

channe l , RPubNetworkID p u b l i s h e r ) ;
9 i n t g e t C l i e n t C h a n n e l P u b l i c a t i o n s ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l ) ;

10 i n t g e t C l i e n t C h a n n e l S e n t M e s s a g e s ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l ) ;
11 long g e t C l i e n t C h a n n e l C o m p u t e d B y t e I n ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l )

;
12 long g e t C l i e n t C h a n n e l C o m p u t e d B y t e O u t ( R P u b C l i e n t I d c l i e n t , S t r i n g c h a n n e l

) ;
13 long g e t C l i e n t C o m p u t e d B y t e I n ( R P u b C l i e n t I d c l i e n t ) ;
14 long g e t C l i e n t C o m p u t e d B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
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15 long g e t C l i e n t C o m p u t e d C u m u l a t i v e B y t e I n ( R P u b C l i e n t I d c l i e n t ) ;
16 long g e t C l i e n t C o m p u t e d C u m u l a t i v e B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
17 long g e t C l i e n t M e a s u r e d B y t e I n ( R P u b C l i e n t I d c l i e n t ) ;
18 long g e t C l i e n t M e a s u r e d B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
19 long g e t C l i e n t W a s t e d B y t e I n ( R P u b C l i e n t I d c l i e n t ) ;
20 long g e t C l i e n t W a s t e d B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
21 long g e t C l i e n t U n u s e d B y t e I n ( R P u b C l i e n t I d c l i e n t ) ;
22 long g e t C l i e n t U n u s e d B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
23 double g e t C l i e n t B y t e I n R a t i o ( R P u b C l i e n t I d c l i e n t ) ;
24 double g e t C l i e n t B y t e O u t R a t i o ( R P u b C l i e n t I d c l i e n t ) ;
25 long g e t C l i e n t M e s s a g e I n ( R P u b C l i e n t I d c l i e n t ) ;
26 long g e t C l i e n t M e s s a g e O u t ( R P u b C l i e n t I d c l i e n t ) ;
27 R P u b C l i e n t I d g e t C l i e n t H i g h e s t B y t e O u t ( ) ;
28 R P u b C l i e n t I d g e t C l i e n t H i g h e s t B y t e O u t ( Set < RPubCl i en t Id > a c t i v e H o s t s ) ;
29 R P u b C l i e n t I d g e t C l i e n t L o w e s t B y t e O u t ( ) ;
30 R P u b C l i e n t I d g e t C l i e n t L o w e s t B y t e O u t ( Set < RPubCl i en t Id > a c t i v e H o s t s ) ;
31 S t r i n g g e t C l i e n t C h a n n e l H i g h e s t B y t e O u t ( R P u b C l i e n t I d c l i e n t ) ;
32 S t r i n g g e t C l i e n t C h a n n e l H i g h e s t B y t e O u t ( R P u b C l i e n t I d c l i e n t , Set < S t r i n g >

i g n o r e C h a n n e l s ) ;
33 S t r i n g g e t C l i e n t C h a n n e l H i g h e s t B y t e O u t ( R P u b C l i e n t I d c l i e n t , Set < S t r i n g >

i g n o r e C h a n n e l s , P l an p l a n ) ;
34 }

6.1.5.1 LoadEvaluation API

The LoadEvaluation API (package Dynamoth.Core.LoadBalancing.LoadEvaluation, shown
in Listing 6.2) allows rebalancers to access relevant load data for all pub/sub servers in an abstract
form. The API allows one to access relevant metrics (number/list of publishers/subscribers, number of
incoming/outgoing bytes, etc.) for any given topic T , in an aggregated form, for any given server H .
One can also obtain detailed network bandwidth usage of each serverH to determine to what resources
are used and remaining on H , in order to take load balancing decisions. One such metric is the load
ratio, which, as described in equation 3.1 of section 3.3.2, yields the ratio of the outgoing bandwidth
compared to the bandwidth capacity of the server. Some other operations are helper functions which,
e.g., determine the highest-loaded or the lowest-loaded server.

The load balancer performs load evaluation (generates a new load evaluator) at every update inter-
val ∆t so that the rebalancer always has access to the latest evaluation results.

Dynamoth supports multiple load evaluators and allows a developer to define new, custom, load
evaluators for specific purposes. Dynamoth currently includes three built-in load evaluators:
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‚ DiscreteLoadEvaluator, which yields measurements that correspond to the last observa-
tion interval ∆t. As expected, such measurements are subject to high variation.

‚ AveragedLoadEvaluator, which averages the result of the last “DiscreteLoadEvaluators”
over a larger window (typically 30 seconds), in order to smooth the measurements. This evaluator
is used by the default Dynamoth rebalancer since it prevents sudden reconfigurations from taking
place in reaction to sudden, short duration spikes.

‚ NewPlanEstimatedLoadEvaluator, which is a special evaluator that attempts to predict
the outcome of a given new plan on the load of the various servers. This evaluator is also used
by the default Dynamoth rebalancer in order to estimate the effects of a new plan, as part of our
heuristic approach which iteratively generates a new plan until a suitable plan is generated. The
estimated load evaluation process is done by taking into consideration the load of the topics that
were subject to migration (or replication) between the old and the new proposed plan, and by
translating the impact of these migrations on the global load. While our empirical observations
showed that such estimations were close enough to the real behavior after applying a new pro-
posed plan, we did not run formal experiments (this is left as future work). If conditions change
after applying a new proposed plan, then a consequence is that the estimations will become less
accurate. We think that this is acceptable since the Dynamoth load balancer can be reinvoked
again to generate once again a better plan, in reaction to the currently observed conditions.

In addition to being fed to the rebalancing framework, the results of the load evaluation process are also
published to a special internal topic so that a special monitoring client can capture them and generate
experimental output files. One such client is the RServer component which is described later in section
6.1.6.

6.1.5.2 Rebalancing Framework

As mentioned, Dynamoth includes built-in rebalancers and supports developing arbitrary rebalancers
to implement a specific rebalancing behavior. In this regard, it offers a rebalancing framework that can
be extended (package Dynamoth.Core.LoadBalancing.Rebalancing).

Listing 6.3: Rebalancer Interface
1 p u b l i c i n t e r f a c e R e b a l a n c e r {
2
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3 /∗ ∗
4 ∗ I f t h i s r e b a l a n c e r d e c i d e s t h a t a new p lan s h o u l d be a p p l i e d and a

new p lan i s a v a i l a b l e
5 ∗ r e t u r n t h e new p la n ; o t h e r w i s e , r e t u r n n u l l .
6 ∗ Note : n u l l w i l l be r e t u r n e d i f c a l l i n g i s N e w P l a n A v a i l a b l e ( ) r e t u r n s

f a l s e .
7 ∗ @return New p lan t h a t s h o u l d be a p p l i e d or n u l l i f no new p lan needs

t o / s h o u l d be a p p l i e d .
8 ∗ /
9 Pl an getNewPlan ( ) ;

10

11 /∗ ∗
12 ∗ R e t u r n s whe ther t h i s r e b a l a n c e r t h i n k s t h a t a new p lan s h o u l d be

a p p l i e d .
13 ∗ @return True i f a new p l an s h o u l d be a p p l i e d ; o t h e r w i s e , f a l s e .
14 ∗ /
15 boolean i s N e w P l a n A v a i l a b l e ( ) ;
16

17 /∗ ∗
18 ∗ S t a r t s t h i s r e b a l a n c e r . A r e b a l a n c e r w i l l run i n t h e background t o

c o n t i n u o u s l y g e n e r a t e p l a n s .
19 ∗ /
20 void s t a r t ( ) ;
21

22 /∗ ∗
23 ∗ I n s t r u c t s t h i s r e b a l a n c e r t o s t o p .
24 ∗ /
25 void s t o p ( ) ;
26

27 /∗ ∗
28 ∗ I s t h i s r e b a l a n c e r r u n n i n g
29 ∗ /
30 boolean i s R u n n i n g ( ) ;
31

32 /∗ ∗
33 ∗ Obta in t h e r e b a l a n c e r ’ s c u r r e n t p lan
34 ∗ @return R e b a l a n c e r ’ s c u r r e n t p lan
35 ∗ /
36 Pl an g e t C u r r e n t P l a n ( ) ;
37

38 /∗ ∗
39 ∗ T e l l s t h e r e b a l a n c e r t h a t t h e c u r r e n t p lan has changed ( and g i v e t h e

R e b a l a n c e r t h e c u r r e n t p lan as i n p u t )
40 ∗ /
41 void s e t C u r r e n t P l a n ( P l an p l a n ) ;
42 }
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At the base of the rebalancing framework is the Rebalancer interface (Listing 6.3), which re-
balancers must implement. Rebalancers run in a different thread and periodically generate new plans,
if needed, typically based on the current load, by querying the LoadEvaluation API described
above. The load balancer periodically queries the active rebalancer to determine whether a new plan
should be applied (isNewPlanAvailable function). In the affirmative, the new plan is obtained
and applied, as described in section 3.4.

Dynamoth provides higher level abstractions in the form of base classes (AbstractRebalancer
and LoadBasedRebalancer) that can be used to implement some common parts of the concrete
rebalancers, such as threading aspects, so that Dynamoth developers can focus their time on imple-
menting the rebalancing logic itself.

By default, Dynamoth includes several built-in rebalancers:

‚ DynamothRebalancer, which implements the system-level rebalancing algorithms of Dy-
namoth as described in section 3.3.2.2 (high load and low load);

‚ DynamothReplicationRebalancer, which implements the topic-level rebalancing algo-
rithms of Dynamoth as described in section 3.3.2.1;

‚ HierarchicalLoadBasedRebalancer, which is a composite rebalancer (inspired by the
composite design pattern) which supports chaining of multiple rebalancers, in order to im-
plement the two-hierarchical load balancing model of Dynamoth (topic-level rebalancing fol-
lowed by system-level rebalancing; thus, DynamothReplicationRebalancer followed
by DynamothRebalancer);

‚ MultiPubRebalancer, which is a special rebalancer that uses the MultiPubSimulator
tool (described later in section 6.3) to generate a proper MultiPub multi-cloud configuration/plan
that takes into consideration the locality of the publishers and subscribers and the available cloud
regions.

6.1.6 RGame Implementation

As described previously in section 3.6, RGame is a prototype game that abstracts a game world contain-
ing tiles and players. Each tile maps to a topic, players publish to the topic corresponding to the tile in
which they are located, and also subscribe to their own tile, and possibly additional tiles within a certain
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radius (optional). RGame is implemented within Dynamoth in the package Dynamoth.Core.Game
and its subpackages. Eventually, RGame could be removed from the main Dynamoth tree in order to
form a separate project, since it only depends on the Dynamoth Client Library (it could use that library
externally).

Listing 6.4: RServer Sample Script file
1 % 0 p l a y e r s
2 +10
3 s l e e p 3000
4 +10
5 s l e e p 3000
6 +10
7 s l e e p 3000
8 +10
9 s l e e p 3000

10 +10
11 s l e e p 3000
12 +10
13 s l e e p 3000
14 +10
15 s l e e p 3000
16 +10
17 s l e e p 3000
18 +10
19 s l e e p 3000
20 +10
21 s l e e p 3000
22 % 100 p l a y e r s

RGame is launched through its main class RMain, which is used to launch RGame player instances.
It takes as a parameter the number of virtual players that this instance will contain. Prior to launching
players, one has to launch the lightweight RGame server (RServer), which controls the flow of player
allocation, as well as a command-line interface to interact with the game, mainly for enabling/disabling
players and making them flock to some location in the game world for flocking experiments. The
command-line interface also supports a trivial scripting format so that commands can be batched and
replayed to perform repeatable experiments. Listing 6.4 shows an example of a RServer script that
enables 10 players every 3 seconds, until it reaches 100 players.

Upon launching, RGame connects to the Dynamoth service and establishes appropriate subscrip-
tions to RGame-related system topics. Eventually, RGame is informed that it can spawn some or all
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of its players. At that point, for each player, RGame performs a subscription to the appropriate tile
topic(s), and starts publishing position updates on a regular basis (the interval is defined as a param-
eter) for that player as it moves within the virtual world. Subscriptions are reestablished whenever
the player switches tiles. RGame defines custom network message classes (defined in Dynamoth.-
Core.Game.Messages) and makes use of the reactor to register to receive such messages at appro-
priate locations in the application layer.

Also, since RGame consumes the Dynamoth Client Library as would any other client using a
Dynamoth service, it is completely agnostic to reconfigurations (plan changes), since such reconfigu-
rations are handled internally within the DCL.

For experimental purposes, each RGame instance measures response times for all state update
messages, and forwards such measurements to the RServer component, which generates CSV output
files. The same RServer component also registers itself to the special Dynamoth topic that conveys
load information and appends this to the aforementioned CSV output file.

6.1.7 Fault Tolerance Implementation within Dynamoth

Our original Dynamoth paper [53] did not include fault tolerance and availability. These aspects were
added in a later iteration, which, combined with the original Dynamoth system, will constitute the basis
of our upcoming journal publication. Nevertheless, these aspects are part of our thesis.

The original Dynamoth framework was not originally architected with these features in mind. How-
ever, given the flexibility of Dynamoth, we were able to add such features, but not in the most optimal
way - some refactoring in this area would be interesting future work.

The availability aspect of Dynamoth is provided mainly through package Dynamoth.Core.-
Availability.

6.1.7.1 Failure Detection and Notification

In our Dynamoth availability model (section 3.5), all nodes share the responsibility of detecting failures
of the various pub/sub servers. The availability package of Dynamoth provides a FailureDetector
component, who is in charge of monitoring the state of all publish/subscribe servers. Therefore, if the
availability module of Dynamoth is enabled, then all nodes must launch an instance of the failure
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detector. Upon receiving a publication, the DynamothRPubManager, part of the Dynamoth Client
Library at each node, notifies the failure detector so that it can properly track how much time elapsed
since the last publication was processed by the pub/sub server and thus detect inactive servers.

Upon detecting a failure (unfortunately we did not have time to implement the failure suspicion
mechanism described previously due to time constraints and the additional complexity involved), the
failure detector notifies interested observers/listeners. This is done following the Observer design pat-
tern. The availability package provides a FailureListener interface, and any instance of a class
implementing the said interface can register with the failure detector component to be notified of server
failures. In our current implementation, the DynamothRPubManager component registers itself to
be notified of failures, so that it can properly reestablish subscriptions and replay missed publications.

6.1.7.2 Storing and Replaying Old Publications

Upon being notified of a failure, the DynamothRPubManager reestablishes subscriptions for all
topics managed by the failing server, towards alternate servers, as described in section 3.5.4. Remember
that all nodes in a Dynamoth system execute an instance of the DynamothRPubManager; therefore,
all nodes, both client-based and infrastructure-based, perform the same actions.

If publication replaying is enabled, then the manager waits for a certain duration based on the timing
protocol described in section 3.5.3, in order to make sure that all other nodes have properly detected the
failure and reestablished subscriptions to alternate servers. In then proceeds to replay old publications.
If FIFO ordering must be respected for a given topic T , then publications are replayed in the order that
they were sent, while new publications are queued and sent only after all past publications have been
replayed, as described in section 3.5.6. Otherwise, if FIFO is not required, then old publications are
replayed in reverse order (freshest publications first), concurrently to any incoming new publication to
be delivered.

As described previously, in order to support publication replaying, all outgoing publications must
be remembered for a predetermined amount of time. Thus, the DynamothRPubManager also has
the responsibility of enqueuing all relevant outgoing publications (if playback is enabled), for a dura-
tion that corresponds to the maximum amount of time that it takes to guarantee proper subscription
reconfiguration at all nodes. Unfortunately, in our current implementation, we only support a global
playback policy (ordered playback (FIFO), concurrent playback (no FIFO) and no playback) for all
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topics and not on a per-topic basis as described in our model. As future work on the Dynamoth code-
base, the code should be refactored to allow for playback policies to be defined on a per-topic basis.

6.1.8 Integration of MultiPub within Dynamoth

In our description of MultiPub, we explained how MultiPub and Dynamoth could be integrated: having
Dynamoth deployments in each cloud region - in our model we abstracted each Dynamoth deployment
as one server; and having MultiPub manage the mapping of topics between all the cloud regions.

6.1.8.1 Adaptation of Dynamoth to MultiPub

In our experimental implementation of MultiPub, we followed a slightly different, simpler model.
Due to the flexibility of the Dynamoth system, it made sense to reuse and adapt it to the needs of
MultiPub. In our model, Dynamoth is used to manage the global multi-cloud publish/subscribe service.
In our experiments, we had 3 cloud regions, and one publish/subscribe server (and local load analyzer
/ dispatcher) per region. As mentioned in section 3.6.2, we deployed clients (we reused RGame) in up
to two of the three regions, and we used appropriate scripts to control the proper deployment of such
clients.

6.1.8.2 MultiPub Rebalancer

As mentioned previously, we launched the Dynamoth load balancer with the MultiPubRebalan-
cer. This rebalancer periodically invoked the solver of our MultiPub simulator (briefly introduced in
section 4.6.2 and described more thoroughly in section 6.3) in order to generate Dynamoth plans that
allowed for a given latency constraint to be respected, while minimizing costs and while considering the
current load conditions as exposed by the LoadEvaluator and considering the model of MultiPub.
Therefore, in our MultiPub-over-Dynamoth implementation, load balancing was not done to manage
bandwidth usage, but to handle delivery constraints and reduce costs. Upon a new plan being generated,
the new plan was applied following the standard Dynamoth protocol.

6.1.8.3 Delivery Configurations

As described in section 4.2.2.3, MultiPub proposes two delivery configurations: direct delivery and
routed delivery. Direct delivery can be viewed as a special case of Dynamoth’s all-publishers approach,
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where publishers publish towards all available servers/regions (one server per region in our implemen-
tation), and subscribers subscribe to only one server/region, which is the closest to them latency-wise.

In order to implement that behavior, we created an alternate replication scheme apart from the two
offered by Dynamoth. This new scheme is based on the original all-publishers replication scheme,
but it differs in that instead of subscriber S selecting a random server when subscribing on topic T
among all servers handling T , S simply selects its closest server from a table (originally supplied to
the DynamothRPubManager).

6.1.9 Integration of DynFilter within Dynamoth

DynFilter was also implemented over Dynamoth. Our experiments were run on a single-server con-
figuration of Dynamoth. While our theoretical model allowed for multi-server setups, we nevertheless
decided to run our experiments using only one server due to the additional complexity involved as well
as timing constraints.

6.1.9.1 CostAnalyzer

DynFilter was built within the Dynamoth load balancer (CostAnalyzer class of the Dynamoth.-
Core.LoadBalancing.CostModel package), but was not integrated as a typical rebalancer

within Dynamoth. In fact, due to the single-server configuration, we disabled the rebalancing aspect
of the load balancer (a static plan is enforced at client-side through the DynamothRPubManager,
since no plan is being generated by the load balancer). As a result, the load balancer still receives
load information from the LLA, and computes appropriate load evaluators, which are used by the
CostAnalyzer component of DynFilter to compute an appropriate filtering matrix (see section
5.3.2).

6.1.9.2 Transmitting the Filtering Matrix

Upon noticing that the CostAnalyzer generated a new filtering matrix, the load balancer publishes
an appropriate control message that wraps the new matrix towards a special topic that local load ana-
lyzers subscribe to - once again reusing the internal pub/sub layer. Upon receiving the new matrix, the
local load analyzers use it as their current matrix.
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6.1.9.3 Forwarding Publications using the Filtering Matrix

As per the model of DynFilter (described in section 5.2.1), all players (once again RGame clients)
publish towards the topic corresponding to the tile in which they are located (high-frequency topic),
and subscribe to the same tile (high-frequency) plus surrounding tiles within a given radius (low-
frequency). Recall that publications on low-frequency topics/tiles may be filtered/dropped. It is the
responsibility of the infrastructure to forward messages from high frequency topics to low frequency
topics, by taking the filtering matrix into consideration.

In our implementation, we modified the local load analyzer component so that upon receiving a
publication (recall that local load analyzers receive a copy of all publications for monitoring purposes),
they republish the same publication to the corresponding low-frequency topic with a probability com-
puted from the filtering matrix, as described in section 5.2.3.

Note that an optimal implementation of DynFilter, perhaps through subsequent refactorings, would
certainly involve having the CostAnalyzer code implemented as a typical Dynamoth rebalancer fol-
lowing the API described in section 6.1.5.2.

6.2 Tools for Running Large-Scale Experiments

Running large-scale experiments in cloud and cloud-like environments was no easy task. For instance,
in the context of Dynamoth, we ran massive multiplayer game experiments with up to 1200 players.
Simulation approaches are certainly easier, but they can sometimes lead to results that do not accurately
reflect the real world, since they cannot always account for all factors [46]. Therefore, we decided to
run real experiments in all of our projects (Dynamoth, MultiPub and DynFilter). For MultiPub, we
conducted both simulated and real experiments.

In order to aid in running such large-scale experiments in an efficient and quick manner, we de-
signed some software tools that we describe in the next sections: Distmoth (section 6.2.1) and MUD-
PLaunch (section 6.2.2).
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6.2.1 Distmoth

Large-scale systems like Dynamoth comprise many components: a large number of game clients (hun-
dreds to thousands), a game server, a set of publish/subscribe servers (Redis) with a local load analyzer,
a load balancer. Such components of a highly distributed system need to be launched on a large set of
different machines (in our experiments, we used up to 80 Linux machines of the McGill SOCS Labs).
Another issue is that some components need to be started before others, so starting all components at
the same time is not an option.

A trivial method is to establish SSH connections to all machines, and launch all components manu-
ally, but this is not a practical solution, especially when one needs to relaunch the system several times
(it might take several rounds of the bug-fixing / relaunching cycle for an experiment to finally succeed).

After having spent considerable time on running experiments, I decided to develop a Python tool
(Distmoth) to aid in launching such highly distributed experiments. The goal was to minimize the time
to execute the launch sequence as much as possible. Another requirement of the tool was to make it
flexible, so that it could be adapted to the needs of various distributed systems. Distmoth was used
successfully for running all of our experiments and allowed us to save a significant amount of time. It
is our plan to eventually release Distmoth as open source.

6.2.1.1 Overview

Listing 6.5: Fictious example of the a machine configuration

1 [servers]
2 server1.cloudprovider.com
3 server2.cloudprovider.com
4 server3.cloudprovider.com
5 [lab6]
6 lab6-1.cs.mcgill.ca
7 lab6-2.cs.mcgill.ca
8 lab6-3.cs.mcgill.ca
9 lab6-4.cs.mcgill.ca

10 lab6-5.cs.mcgill.ca

Distmoth comes in the form of a set of Python files. It manages the launching of a distributed
system, using two specific configuration files:
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‚ (1) machinelist.conf, which contains a pool of Linux machines that can be used, and
that are reachable via the SSH protocol. Each machine can optionally be assigned to a category.
Listing 6.5 shows a simplified example of such a configuration file, with 3 servers supposedly in
the cloud, and 5 machines from McGill’s SOCS lab #6;

‚ (2) <configuration>.conf, which specifies the different components of the distributed
system and how they should be launched. More details are given in the next section (6.2.1.6).

Distmoth makes use of a pool of Linux machines that are available and that can be reached via the SSH
protocol, as well as a list of commands to execute on these machines. A Dynamoth invocation is done in
three steps, which are described in the next subsections: (1) finding available machines, (2) launching
the components, (3) proposing a command-line interface and (4) killing all running components.

6.2.1.2 Finding Available Machines

The first step is for Distmoth to scan through all the machines defined in machinelist.conf. It
then determines which machines are available and which machines are non-responsive. The latter are
ignored, and Distmoth launches the components specified in the configuration file only on the available
machines. Determining which machines are available can take non-negligible time, especially if the
pool of machines to be used is large. This was the case when we put in the list all of the machines
from the various McGill SOCS labs (~150 machines). As an optimization that we implemented, upon
discovering available machines, Distmoth rewrites a more optimized version of it’s machine listing:
machinelist_optimized.conf. Upon relaunching, Distmoth can then load this optimized file
instead, so that previously available machines are used first, before attempting to use machines that
were unavailable in the previous invocation of Distmoth.

6.2.1.3 Launching the Components

The second step is for Distmoth to launch the components specified in the configuration file. Please
refer to the syntax described in the next section (6.2.1.6). All components specified in the configura-
tion file are launched in the order that they appear. Multiple instances of the sane component can be
launched (for example, for players).

Prior to launching a given component instance, the next available machine is first drawn from the
pool of available machines. The component instance is then launched by connecting via SSH to the

152



6.2 Tools for Running Large-Scale Experiments

machine, and invoking the specified launch command. The connection is launched in a way so that
it can be detached, and the process still runs in the background, in order to avoid having to maintain
many open SSH connections. The output of the launched component can be redirected to a file for
subsequent analysis, if needed.

In the event where all available machines have already been used, but component instances still
need to be launched, then Distmoth starts reusing machines that already have component instances
running (by going back to the top of the list).

Note that while the machinelist.conf file format allows for specifying machine groups, this
feature is not yet implemented in Distmoth’s execution engine.

6.2.1.4 Command-Line Interface

After all components have been launched, Distmoth enters a command-line mode where the user can
perform additional tasks. Some built-in commands have been implemented (they can be found in
the package distmoth.commands). For instance, one can launch additional instances of a given
component (to launch 10 additional instances of the player component, one would type launch
player 10), kill any running component instance (kill command), obtain the current list of all
running components (status command), view the list of all active machines (machines command)
as well as the quit command, which must be invoked when the experiment is done to kill all running
component instances. Additional commands can be implemented by overriding the base class defined
in command.py.

6.2.1.5 Killing all Running Components

A danger when running background tasks is that these tasks can still be active unknowingly, and can
potentially consume large amounts of resources. Sometimes killing a parent process might not be
sufficient as the parent might have spawned child processes that need to be terminated as well. Distmoth
provides a mechanism to properly clean up tasks on active machines in the form of a virtual reset
component (this component does not follow the regular execution flow of the configuration file).

The command corresponding to this reset command is the command that will be invoked to guar-
antee proper termination of all potentially running processes on any machine. Such a command will
typically contain a combination of kill/killall shell commands under Linux.
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The reset component is executed when one triggers the termination of one particular instance of
a given component. It is also invoked on all currently active machines when one invokes the quit
command to close all running components (freeing up all resources), which is in Distmoth terminology
considered a clean shutdown. If the Distmoth process exits for a reason other than the invocation of
the quit command, then it is not a clean shutdown and as a consequence, upon it’s next invocation,
Distmoth will trigger a reset on all previously active machines (the type of shutdown and the current list
of active machines are persisted to disk). A similar scenario happens when some machines considered
active cannot be reached during the invocation of a quit command: in this case, the machines for
which the connection or the execution of the quit command failed are persisted so that the invocation
of quit is rescheduled upon next starting Distmoth.

6.2.1.6 Configuration File Syntax

Listing 6.6: Configuration File Syntax
1 [ r e s e t ]
2 command= k i l l a l l ´9 r e d i s ´s e r v e r ; k i l l a l l ´9 j a v a
3 a u t o c l o s e = t r u e
4 w a i t =10
5

6 [ p u b s u b s e r v e r 0 ]
7 c o u n t =1
8 d i r e c t o r y = / tmp / ${USER}_mammoth / mammoth2
9 command= j a v a ´Xmx1500M ´ j a r mammoth´ t e s t . j a r rpubhub 0

10 h o s t = s e r v e r 1 . c l o u d p r o v i d e r . com
11 d e t a c h = t r u e
12 l o c a l o u t p u t = t r u e
13 w a i t =15
14

15 [ p u b s u b s e r v e r 1 ]
16 c o u n t =1
17 d i r e c t o r y = / tmp / ${USER}_mammoth / mammoth2
18 commannd= j a v a ´Xmx1500M ´ j a r mammoth´ t e s t . j a r rpubhub 1
19 h o s t = s e r v e r 2 . c l o u d p r o v i d e r . com
20 d e t a c h = t r u e
21 l o c a l o u t p u t = t r u e
22 w a i t =15
23

24 [ g a m e s e r v e r ]
25 c o u n t =1
26 d i r e c t o r y = / tmp / ${USER}_mammoth / mammoth2
27 command= j a v a ´Xmx1500M ´ j a r mammoth´ t e s t . j a r m a s t e r
28 d e t a c h = t r u e
29 l o c a l o u t p u t = t r u e
30 w a i t =15
31
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32 [ p l a y e r ]
33 c o u n t =10
34 d i r e c t o r y = / tmp / ${USER}_mammoth / mammoth2
35 command= j a v a ´Xmx1500M ´ j a r mammoth´ t e s t . j a r npc 30
36 d e t a c h = t r u e
37 l o c a l o u t p u t = t r u e
38 w a i t =6
39

40 [ k i l l s w i t c h ]
41 c o u n t =0
42 d i r e c t o r y =~/ Documents / mammoth2
43 command= t o u c h " k i l l s w i t c h /% d a t e t i m e %. ks "
44 a u t o c l o s e = t r u e
45 h o s t = lab7 ´2. c s . m c g i l l . ca
46 w a i t =60

Listing 6.6 shows an example of a simplified Distmoth configuration file that was used to run the
Mammoth distributed system. The file is divided in sections that contain the name of a component
in brackets. For each component, one can specify the number of instances that should be deployed
(count parameter), the directory and command to be executed (multiple commands separated by
semicolons can be invoked), and a duration in seconds to wait before launching the next instance /
component. One can decide to set count=0 if the desired behavior is to not launch any instance of that
component automatically, but still allow the command to be invoked manually through the command-
line interface of Distmoth. One can also use the host parameter to force a specific command to be
executed on a specific host. Some additional parameters (not described for brevity) are supported.

The execution sequence follows the flow of the configuration file. In our example, pub/sub servers
are launched first, then the game server, then 10 (groups of 30) players. Note that the two pub/sub
servers are forced to launch on specific dedicated cloud servers (host parameter).

6.2.2 MUDPLaunch

While the use of Distmoth allowed us to save a lot of time when running our experiments, establishing
all SSH connections prior to deploying all instances was still time-consuming. In order to address this
issue and speed up the deployment process, we designed the MUDPLaunch tool, which allows one to
install a simple command-line listener on a large group of machines in order to quickly invoke a given
process on the target machine.

MUDPLaunch provides two components: MUDPReceiver, which listens for simple shell-like com-
mands on a given UDP port, and MUDPBroadcaster, which transmits commands to MUDPReceiver
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instances, using UDP unicast and broadcast. MUDPLaunch is not a replacement for Distmoth: it is
used in combination with Distmoth, whenever it makes sense to use it.

In the context of our projects, we created a special Distmoth launcher file that launched the MUD-
PReceiver tool instead of launching some of our components directly, and we used MUDPBroadcaster
to send the proper startup and kill commands.

The most noticeable advantage of the use of the MUDPLaunch tool in combination with Distmoth
is that when we made changes to the source code, terminating and restarting the processes on every
machine involved in the experiment was very fast, compared to using only Distmoth where all the
programs needed to be restarted through Distmoth.

6.3 MultiPubSimulator Implementation

As explained in section 4.6, as part of our work on MultiPub, we ran a set of simulated global-scale
experiments in multiple regions of the EC2 cloud. Running such experiments in all of the 10 regions
would have been very complex from a logistical standpoint, due to many factors. Notably, as each re-
gion is independent, one has to replicate the configurations and the virtual machine images across each
individual region. Furthermore, costs can be significant, as inter-cloud costs apply for outgoing band-
width transmitted between regions (figure 4.1). For Asian and South-American regions in particular,
outbound costs are very high.

As we mentioned previously, because of all these considerations, we decided to run some of our
experiments in a simulated environment. For that, we built the MultiPubSimulator tool, which imple-
ments a simulation of the MultiPub model and it’s different configurations.

6.3.1 High-Level Description

As briefly introduced in section 4.6.2, MultiPubSimulator can simulate the execution of Multi-
Pub with any number of topics, subscriptions and publications. Each topic has a set of publishers and
subscribers. For each publisher, a specific publication rate and publication size, as well as an upper
bound in terms of maximum acceptable delivery time (maxT ) and the ratio/percentile ratioT of all
delivery time measurements that should be below maxT must be specified.
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When launched, MultiPubSimulator proceeds according to the following steps:

1. MultiPubSimulator determines the optimal configuration for every topic T given the current set
of publishers and subscribers on T as well as the delivery time bounds imposed on T . In other
words, it solves the optimization problem defined in section 4.5 using our brute-force approach.
As we demonstrated in the Runtime Analysis section (4.6.5), our brute-force approach can scale
to considerable numbers of publishers and subscribers.

2. MultiPubSimulator runs a set of experiments as specified in the configuration file.

3. MultiPubSimulator produces a set of output files that are used to produce graphs with gnuplot

using a set of predefined gnuplot configuration files. These output files are very specific to the
needs of this thesis and were used to produce the graphs shown throughout the chapters of this
thesis. Therefore, this aspect of the tool is not described further here.

In short, upon launching, the tool determines the most optimal configuration given the contents of the
configuration file provided as input, and then runs various experiments and outputs relevant experimen-
tal data. MultiPubSimulator is invoked through it’s main class module multipubsimulator, and
takes as parameter the path to a configuration file that it takes as input and the name of an experiment
to run. The format of the configuration file is described in the next section.

6.3.2 Input and Configuration

Listing 6.7: XML Configuration File Example
1 < Mul t iPubExpe r imen t s >
2 < Exper imen t s >
3 < Exper imen t name="Ex0">
4 <Topics >
5 <Topic name="T1">
6 < P u b l i s h e r s >
7 < Repea t c o u n t ="100" >
8 < P u b l i s h e r r e g i o n =" sa´e a s t ´1" p u b l i c a t i o n s ="1" p u b l i c a t i o n S i z e

="1024" / >
9 < P u b l i s h e r r e g i o n =" ap´s o u t h e a s t ´1" p u b l i c a t i o n s ="1" p u b l i c a t i o n S i z e

="1024" / >
10 </ Repeat >
11 </ P u b l i s h e r s >
12 < S u b s c r i b e r s >
13 < Repea t c o u n t ="10" >
14 < S u b s c r i b e r r e g i o n =" ap´s o u t h e a s t ´1" / >
15 < S u b s c r i b e r r e g i o n =" sa´e a s t ´1" / >
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16 </ Repeat >
17 </ S u b s c r i b e r s >
18 </ Topic >
19 </ Topics >
20 < O p t i m i z e r s >
21 < O p t i m i z e r t o p i c ="T1 " p e r c e n t i l e ="75" bound ="200" / >
22 </ O p t i m i z e r s >
23 </ Exper iment >
24 </ Mul t iPubExpe r imen t s >

All input data that is needed by MultiPubSimulator is defined in a simple XML configuration file.
The XML format was designed to be as convenient and flexible as possible.

The file allows one to define a set of experiments, each identified with a unique name. Upon invok-
ing the simulator, one specifies the configuration file and the name of the experiment to be considered.
Each experiment contains a series of named topics. Listing 6.7 shows a sample configuration file that
contains a single experiment (Ex0), which contains one single topic (T1).

Inside the section corresponding to each topic, one defines the set of publishers and subscribers.
For each publisher and subscriber, the cloud region to which the publisher (subscriber) is closest must
be specified. A trivial approach is to define one publisher (subscriber) per line. As an example, the
line <Subscriber region="us-east-1" /> would add a subscriber who is closest to region
us-east-1 (Virginia) (it might also be close to other regions, but it is chosen in such a way that it is
closest to the specified region among all regions). The definition of a publisher requires two additional
parameters: the number of publications per second that this publisher produces, as well as the size in
bytes of each individual publication. While our MultiPub formal model allows for different sizes for
each publication, we decided to simplify the implementation model.

Defining each publisher and subscriber individually can be cumbersome. As a way to simplify,
MultiPubSimulator proposes some syntactic sugar in the form of a Repeat definition that al-
lows one to repeat the same publisher or subscriber definition(s) up to n times. In our sample con-
figuration files, the repeat statement is used to produce 100 publishers in cloud region sa-east-1

(Sao Paulo) and 100 publishers in cloud region ap-southeast-1 (Singapore), using only two indi-
vidual definitions. Likewise, the same shortcut is used to produce 20 subscribers in Sao Paulo and 20
subscribers in Singapore.

Following the definition of topics, one must specify an optimizer for each topic. The optimizer
contains the delivery time percentile ratioT (75% in the sample configuration file), as well as the
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delivery time bound maxT (200ms).

The simulator then takes as input the publisher and subscriber definitions for each topic, as well
as the optimization criteria, and then solves the optimization problem (and, if enabled, generates some
relevant experimental output files). Note that the various definitions parsed from the configuration file
are encapsulated into a rich object-oriented model that corresponds to the format of the configuration
and that exposes classes to represent the various domain concepts such as topics, publishers
and subscribers deriving from a common ancestor client, etc. We think that one could adapt
our MultiPubSimulator tool for other topic-based pub/sub simulation projects.

6.3.3 Latency Databases

In order to properly emulate latency values, we created two databases (CSV files) based on latency
measurements made between nodes of the King dataset and servers in each of the 10 Amazon EC2
regions. The methodology was described in section 4.6.1. In the MultiPub terminology, these databases
model the L and LR latency matrices, as they contain latency measurements between approximately
700 King nodes and each of the 10 regions, and between each pair of regions.

The latency database files are read when the simulator starts. Relevant Python modules expose
functions to query for specific database values. As an example, one can query to obtain a virtual client
(King node) that is closest to a given region latency-wise. This specific function is notably called when
the configuration file is read, in order to initialize the sets of virtual publishers and subscribers.

Alternatively, MultiPub also supports querying for a virtual node that is geographically closest to
any other given node or EC2 region (note that that this doesn’t necessarily imply that the node will also
be closest from a latency point of view).

6.3.4 Solving

The solving process of the simulator closely follows the solving process of the optimization problem
outlined in section 4.5. To accomplish that goal, MultiPubSimulator provides a topicConfiguration
module/class that abstracts a given configuration (choice of regions and whether to use direct or routed
delivery) for a given topic T . As such, the set of possible configurations depends on the number of
regions and the delivery approach. Following the steps described previously, the topicOptimizer
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module of MultiPubSimulator generates the set of all possible configuration using brute-force, and
then determines which one is the most optimal.

Latency values between publishers and cloud regions, between cloud regions, and latency values
between cloud regions and subscribers are taken from the latency databases described in section 6.3.3.
More precisely, for each topicConfiguration in the configuration space, appropriate latencies
are used depending on the location (latency-wise) of all publishers/subscribers, the delivery scheme
and the set of enabled regions in that configuration. Likewise, costs are computed based on the con-
figuration, as per equations 4.3 and 4.4 of section 4.4.4. A list of all publications sent by all publishers
is also built, which is needed to assert whether the delivery constraint of the said configuration is
respected (equations 4.5 and 4.6 of section 4.5.1).

After performing all computations, the solver returns the most suitable topicConfiguration,
according to the steps outlined in section 4.5.3 (minimal costs if delivery constraint can be respected,
otherwise minimal latency).

6.3.5 Invoking MultiPubSimulator through Dynamoth

As mentioned on several occasions, in addition to simulation experiments, we also ran some experi-
ments in the real EC2 cloud, albeit with only 3 EC2 regions instead of 10. Since MultiPubSimulator
already had a fully implemented solver, it made sense to reuse the solver component of the simulator
(in Python), rather than reimplementing a new solver in Java.

Therefore, the MultiPub rebalancer component discussed in section 6.1.8.2 invokes the Multi-
PubSimulator solver to obtain the most suitable configuration. Every time the rebalancer is in-
voked, it outputs a specifically crafted MultiPubSimulator configuration file that reflects the exact
current conditions as observed by Dynamoth’s load balancer. It then executes a MultiPubSimulator
solver instance (by invoking the Python interpreter), and captures the output, which contains the most
optimal configuration reflecting the current conditions, and applies that new configuration. For more
information, the reader is encouraged to refer to our relevant cloud-based experiments in section 4.6.4.
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7
Final Conclusions & Future Work

7.1 Final Conclusions

In this thesis, we made several important contributions towards scaling topic-based publish/subscribe
systems in a cloud setting.

Our first system, Dynamoth, proposes a cloud-based service that addresses the scalability and load
balancing aspects of large-scale topic-based pub/sub systems, with a particular emphasis on the needs
of latency-constrained applications, such as multiplayer online games. Dynamoth notably proposes a
load monitoring model, combined with a full hierarchical load balancing architecture that takes the
specific characteristics of each topic into consideration in order to accurately balance the load across
different servers in the cloud. As part of its load balancing strategy, Dynamoth supports migrating
topics between servers in a seamless manner, as well as adding new and removing unused servers. In
addition, Dynamoth also includes mechanisms to balance the load of high-load topics featuring many
subscribers and/or publishers across multiple servers. A key aspect of Dynamoth’s load balancing ap-
proach is that rebalancings are propagated in a lazy way, as to minimize their impact on overall system
stability. Moreover, Dynamoth also provides performance-driven availability and fault tolerance, as it
can detect publish/subscribe server failures and quickly reconfigure itself to compensate for the server
loss. In this regard, Dynamoth allows for potentially missed publications to be automatically replayed,
and provides different guarantee levels regarding reliability and message ordering during recovery de-
pending on the needs of the application. In order to evaluate Dynamoth, we implemented the full model
that it proposes within our Dynamoth platform implementation and ran several cloud experiments.
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Our second system, MultiPub, builds on top of Dynamoth to address a further set of challenges.
It proposes a novel global-scale pub/sub service that takes into consideration the availability of cloud
resources in different regions of the world, the locality of clients dispersed within and across these
regions and the latency requirements of the application of MultiPub. As such, MultiPub allows one to
impose delivery time constraints on different topics within the system. MultiPub has two main goals:
(1) meeting the per-topic minimum latency constraints that the application can impose on publication
delivery, and (2) minimizing cloud-incurred costs. The MultiPub rebalancing framework gathers exten-
sive load and response time metrics from all clients in a distributed manner, and realizes it’s two main
goals by carefully mapping the different topics of the pub/sub system to servers located in different
regions, considering that deploying a given topic to a server in a given region might yield (1) reduced
delivery times for some clients and (2) reduced costs as cloud-incurred outgoing bandwidth prices vary
between regions. Thus, determining the best allocation strategy is formulated as an optimization prob-
lem, where meeting delivery time bounds becomes a constraint, and where costs are the optimization
criteria. The validation of MultiPub is based on a simulator as well as a full implementation of Multi-
Pub on top of our Dynamoth platform. Extensive experiments were run: simulation experiments were
run locally and live experiments were dynamically run in the cloud, and the results compared.

Multiplayer games and their relationship with the topic-based publish/subscribe model were yet
another major aspect of this thesis. Our third system, DynFilter, proposes a scalable topic-based pub/-
sub service specifically tailored for the needs of large-scale games. The main goal of DynFilter lies in
reducing bandwidth usage in games relying on a topic-based publish/subscribe paradigm, which, in a
cloud setting, translates to reducing costs. As DynFilter is targeted at games, it exploits game-centric
interest management concepts to transparently suppress a portion of the state update publications when
it has to reduce bandwidth use. By exploiting the game semantics, DynFilter removes publications that
are of lesser importance while insuring that the more important state update publications are delivered
consistently. As a result, DynFilter performs adaptive filtering based on currently observed conditions,
in order to not exceed the application-defined bandwidth quota over a given time window. Such filtering
is done in a fine-grained manner and notably takes into consideration the dispersion of players within
the game. DynFilter was also fully implemented within our Dynamoth platform, and experiments were
run in the context of different types of multiplayer games for validation purpose.

Our final contribution consists in a collection of software tools that we implemented to properly
evaluate our different systems. The first is the implementation of the Dynamoth platform itself, which
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was designed to support running large-scale pub/sub experiments in a real cloud settings. The plat-
form was built following state-of-the-art software engineering principles to make its code base highly
reusable, customizable and extensible. As a result, the platform was successfully used to implement the
three models (Dynamoth, MultiPub and DynFilter) presented in this thesis, and then successfully used
to run validation experiments of the different models with over 1200 simultaneous clients. Besides the
Dynamoth implementation platform, we further include a set of tools to aid in the setup and configura-
tion of large-scale cloud experiments (Distmoth and MUDPLaunch), as well as a full implementation
of a simulation package in order to run simulation experiments for our MultiPub project.

Overall, we think that we brought significant contributions towards scaling topic-based publish/-
subscribe systems in a cloud setting. As such systems are used across a wide range of applications, we
think that the approaches that we proposed could very well be implemented in commercial pub/sub
systems in order to support the scalability and the globality needs of large-scale applications. In the
context of this thesis, a particular emphasis was put on meeting the needs of latency-sensitive applica-
tions, such as games, which could, in our opinion, greatly benefit from our novel latency-minimizing
approaches. In addition, we think that integrating some of our approaches could also yield the added
benefit of reducing bandwidth-incurred costs in the cloud.

7.2 Future Work

Our work done in the area of scalable topic-based publish/subscribe systems opens up many potential
research directions. This sections lists some of these promising orientations that we intend to explore.

Taking CPU Load into Consideration In the context of our different contributions, we considered
the problem of scaling topic-based publish/subscribe systems in the cloud. CPU was not really a limit-
ing factor, as the matching process of topic-based systems is lightweight, as opposed to content-based
systems where the CPU can be a constrained resource. Nevertheless, as these systems scale, in some
circumstances (for instance, if virtual CPUs are used in the cloud), then the CPU can become a bottle-
neck. An interesting research direction would be to adapt our approaches and models to take CPU load
into consideration as part of our load balancing approaches.

Clustering and Heuristic Approaches for MultiPub Our results already demonstrated that our
MultiPub system could scale to important figures in terms of publishers, publications and subscribers,

163



7.2 Future Work

despite having to solve an optimization problem to generate the best configuration. Our runtime analy-
sis of MultiPub (section 4.6.5) however revealed that there were limitations beyond which the solving
process became too CPU/time consuming. Some of these limitations were mitigated by reducing the
configuration space (such as having less regions), or by having a more optimized implementation.
An additional way to reduce the configuration space that we aim at implementing involves clustering
approaches, so that several nodes located in the same geographical area, that share similar latencies
towards the different cloud regions can be abstracted as a cluster of nodes. In the same spirit, in the
context of Dynamoth, for systems with a huge amount of topics, one could group similar topics (similar
because of significant overlap of their sets of publishers/subscribers) into clusters of topics.

Heterogeneity of Cloud Resources Our MultiPub model description and experiments considered
the 10 regions of the Amazon EC2 cloud. However, our model is not bound to using resources from a
single provider only. An interesting area of future work would involve using cloud deployments from
several providers. Such a scenario could possibly lead to further cost reductions and potentially more
optimized latencies. MultiPub could also be extended to support selecting heterogeneous configura-
tions, as cloud providers typically offer different sets of virtual machines with varying specifications
(network bandwidth, CPU, RAM, etc.) at different prices. The latter would also be an interesting area
of future work in the context of Dynamoth, as different virtual machine instances could be deployed
when adding new publish/subscribe servers depending on the current scalability needs. The Dynamoth
load balancer would then have to be adapted to consider heterogeneous cloud resources.

Publish/Subscribe in an IoT Context Internet of Things represent a promising and novel research
orientation, in which a large amount of common devices are now inter-connected. An increasing
amount of such devices are now part of our daily life, such as home appliances or other objects.
IoT also enjoys widespread usage in various other devices, such as smart vehicles, or smart meters
in the power grid that transmit power consumption, or all kinds of medical devices that transmit a
wide range of health-related measurements. Publish/subscribe paradigms can certainly play a role in
the IoT world. For instance, medical devices could transmit live measurements for a given patient to a
given topic, that the medical staff could subscribe to. On the other hand, smart vehicles could transmit
live traffic information that other drivers or that the authorities could subscribe to. Applying pub/sub
paradigms to IoT devices brings interesting research challenges. From a privacy standpoint, in the
context of medical devices, one might wish to restrict subscribing to sensitive topics carrying patient-

164



7.2 Future Work

related information to authorized subscribers only [17]. From a scalability standpoint, in the context
of smart cars, subscribing to receive live measurements from a large amount of individual cars could
consume too many resources. A given user might be interested in receiving information at different
levels of details: receiving aggregated traffic information at a higher level of details when requesting
a global view, and receiving more detailed information about individual cars when requesting a more
local view, in a similar spirit as our work in [69]. Inspired by some ideas proposed in DynFilter, the
pub/sub layer could be adapted to aggregate and disseminate publications at varying levels of details
according to the needs of the subscribers.

Object Caching and Disseminating Service Besides publish/subscribe, key-value stores represent
another popular paradigm in which key-value pairs of arbitrarily complex data are stored for easier,
more efficient retrieval. A good application of key-value stores is web applications, in which the re-
sults of frequently run database queries are cached, for efficiency purposes. Upon a client requesting
the result of a given database query, the application first determines if an appropriate cached result
already exists in the caching service. In the affirmative, the cached result is returned, which spares the
execution of the query on the database server, which can ultimately lead to significant performance
improvements.

In a game context, especially in massive multiplayer online games, virtual environments typically
contain a colossal amount of virtual objects that are frequently accessed or altered by many players.
In order to access these virtual objects, players need to obtain a copy of such objects, and therefore
the typical scenario is for such clients to request replicas of these objects from the game server/service
[70]. Our empirical observations on Mammoth revealed that having the server generate such replicas
on a scale of a magnitude of a MMOG represented a heavy task. Therefore, we believe that games
could benefit from a caching service. However, an important limitation of typical key-value caching
services is that they usually don’t provide update operations on values, as they trivially consider values
as sequences of bytes [51]; therefore, values can only be overwritten instead of updated. As future
work, we would like to explore the idea of designing an object-aware caching service that would
not only provide a key-value storage, but that would also consider values as real objects (classes).
This would allow for performing dynamic operations on objects instead of completely replacing these
objects. In addition, upon a client fetching a given object, the caching service could support that client
subscribing to receive updates performed on that object, by using a publish/subscribe middleware such
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as Dynamoth. All clients subscribing to the objects that they are interested in would then always be
updated automatically with the latest, freshest version of these objects, which we believe could lead to
important resource savings.
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AOI Area of interest
API Application programming interface
CPU Central processing unit
DDS Data distribution service
DHT Distributed hash table
FPS First person shooter
IaaS Infrastructure as a service
IoT Internet of things
LB Load balancer (specific to Dynamoth)
LLA Local load analyzer (specific to Dynamoth)
MMO Massive multiplayer online
MMOG Massive multiplayer online game
MMORPG Massive multiplayer online role-playing game
PaaS Platform as a service
P2P Peer to peer
QoS Quality of service
SaaS Software as a service
VM Virtual machine
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