
SmartJS: Dynamic and Self-Adaptable Runtime
Middleware for Next-Generation IoT Systems

Julien Gascon-Samson
University of British Columbia

Vancouver, BC, Canada
julien.gascon-samson@ece.ubc.ca

Mohammad Rafiuzzaman
University of British Columbia

Vancouver, BC, Canada
rafiuzzaman@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, BC, Canada
karthikp@ece.ubc.ca

Abstract
The Internet of Things (IoT) has gained wide popularity both
in the academic and industrial contexts. However, IoT-based
systems exhibit many important challenges across many di-
mensions. In this work, we propose SmartJS, a rich Javascript-
based middleware platform and runtime environment that
abstracts the complexity of the various IoT platforms by pro-
viding a high-level framework for IoT system developers.
SmartJS abstracts large-scale distributed system considera-
tions, such as scheduling, monitoring and self-adaptation,
and proposes a rich inter-device Javascript-based code migra-
tion framework. Finally, it provides debugging and monitor-
ing techniques to analyze performance and observe system-
wide security properties.

CCS Concepts • Software and its engineering → De-
velopment frameworks and environments; Runtime
environments; System description languages;

Keywords IoT, Internet of Things, Javascript, Scheduling,
Code Migration, Dependability, Security
ACM Reference Format:
Julien Gascon-Samson, Mohammad Rafiuzzaman, and Karthik Pat-
tabiraman. 2017. SmartJS: Dynamic and Self-Adaptable Runtime
Middleware for Next-Generation IoT Systems. In Proceedings of
2017 ACM SIGPLAN International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity (SPLASH
Companion’17). ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3135932.3135939

1 Introduction
The Internet of Things (IoT) refers to having several devices
across many domains that are inter-connected in order to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5514-8/17/10. . . $15.00
https://doi.org/10.1145/3135932.3135939

provide and exchange data. IoT systems exhibit important
challenges across many dimensions, such as very high device
heterogeneity, and the usage of many diverse programming
languages, APIs and protocols. These factors not only render
integration difficult, they also require developers to handle
complex distributed systems and software dependability and
security considerations, which can open the door to bugs
and security vulnerabilities [2].

In this paper, we propose SmartJS, a rich Javascript-based
middleware and runtime environment aiming at solving
many of such challenges. While JavaScript has gained wide
popularity as a programming language for web applications,
it has also been proposed as a viable language for IoT. This
is because of its event-driven nature, and large installed base
of libraries and developers who know the language. Conse-
quently, there have been a number of Virtual Machines (VMs)
developed for running JavaScript code on IoT devices [1, 4].
SmartJS notably proposes a unified set of APIs and a set

of high-level programming and communication paradigms
that can be be used to efficiently write the code for the IoT
system in JavaScript. SmartJS also abstracts developers from
large-scale distributed system challenges and internally takes
care of the dynamic scheduling and monitoring of the exe-
cution of the various components. In order to increase the
dynamism of the system, SmartJS also provides, as a novel
contribution, a state-preserving migration engine that trans-
parently migrates the execution of Javascript-based applica-
tions across heterogeneous IoT devices. Finally, SmartJS also
provides several debugging measures such as live system-
wide invariant and performance monitoring and analysis.

2 SmartJS Ecosystem and Applications
From a holistic point of view, a SmartJS environment com-
prises a highly-distributed SmartJS Application and dynami-
cally manages its execution over a set of heterogeneous de-
vices. At it’s core, a SmartJS application contains source code
expressed in a high-level language (Javascript in our case),
in a modular fashion (i.e., in the form a set of components),
which allows developers to abstract out the platform-specific
considerations and which allows the runtime to dynamically
decide on the best placement of components to devices.

Device and Component Declaration.Developers must
specify a set of devices on which the components will be run.
Also, as there will likely be more than one instance of some

https://doi.org/10.1145/3135932.3135939
https://doi.org/10.1145/3135932.3135939
https://doi.org/10.1145/3135932.3135939


SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada J. Gascon-Samson, M. Rafiuzzaman, and K. Pattabiraman

of the components (i.e., a building can contain many temper-
ature sensors and actuators, but perhaps only one regulator),
then developers must also specify the different instances of
each component to be executed. Note that SmartJS allows
for these to dynamically change, as devices and components
can dynamically be added and/or removed.

Physical and Logical Constraints. The SmartJS Man-
ager schedules the placement of components on devices. For
the Manager to make optimal choices, a set of constraints
must be specified, as the set of devices which can hold a
given component instance might be restricted. For instance,
a sensor component instance might have to be bound to a
specific device, due to the presence of the physical sensor.
SmartJS proposes mechanisms to express such constraints,
and distinguishes between two sets of constraints: (1) physi-
cal constraints, which model the system characteristics of
the various SmartJS devices themselves (CPU, memory, band-
width), and (2) logical constraints, which model the charac-
teristics of the SmartJS application components.
Inter-Component Communications. In SmartJS, we

require that all inter-component communications follow a
topic-based publish/subscribe [3] (MQTT) model. The choice
of this model was primarily motivated by the logical decou-
pling of content producers from content consumers that it
provides, which allows for abstracting many networking-
related considerations. Also, due to its lightweightness and
simple yet flexible conceptual model, the use of topic-based
publish/subscribe enjoys widespread popularity in IoT [5].

3 Monitoring and Self-Adaptation
SmartJS collects statistics for every component running on
each device, at a regular time interval (every second). They
include the current CPU and RAM usage, the bandwidth
usage (incoming and outgoing) and the latency (incoming
and outgoing) relative to each other component.

Machine Learning Model for Resource Prediction.
In order to accurately schedule the placement of a given
component C , one must be able to evaluate the outcome of
executing C on the various available IoT devices, which are
subject to various workload patterns. In that end, we first
build a prediction model by learning and observing the out-
come of executing various SmartJS components exhibiting
different load profiles (as per the metrics described above),
on various devices subject to various load patterns. This en-
ables us to accurately predict the outcome of executing C
given all available IoT devices and their current load.

Component Scheduling. Taking the predictive model
in conjunction with the physical and logical constraints out-
lined in section 2, the SmartJS Manager statically and dynam-
ically schedules the execution of all component instances
across all devices in order to ensure that all constraints are
met. More precisely, the Manager produces an initial config-
uration, which is then dynamically refined as the conditions
and constraints across all components and devices evolve.

Code Migration. Upon the SmartJS Manager generating
a new configuration in which some of the component in-
stances are moved to a different device, it becomes necessary
to dynamicallymove the execution of such components from
the old device to the new one.
As a novel contribution, we propose a novel Javascript-

based migration framework (SmartJS Migrator), which can
transparently and dynamically checkpoint and migrate the
execution of a given event-based Javascript application from
one Javascript virtualmachine (i.e., Node.js) to another, across
heterogeneous IoT devices and in the cloud. Ourmethod is in-
spired by the prior work [6, 7], in which the authors proposed
a set of techniques for migrating the execution of Javascript-
based web applications across different browsers. As these
authors outlined, migrating a Javascript-based application is
not trivial, mainly due to the fact that the language exhibits
special constructs (i.e., closures, event queues, etc.) that in-
crease the algorithmic complexity of saving and restoring
the state.

4 Conclusion
In this work, we proposed SmartJS, a rich Javascript-based
middleware platform and runtime environment which aims
at solving many of today’s challenges in developing large-
scale IoT applications by proposing a rich and abstract pro-
gramming and communication paradigm. SmartJS also aims
at shielding developers from distributed systems and security
challenges considerations bymeans of a declarative approach
at expressing system-wide constraints, a dynamic scheduling
and heterogeneous migration engine and a performance and
invariant monitoring and analysis engine.

References
[1] 2014. Intel XDK. (2014). https://software.intel.com/en-us/xdk
[2] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-

son, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive Ex-
perimental Analyses of Automotive Attack Surfaces. In Proceedings of
the 20th USENIX Conference on Security. USENIX, Berkeley, USA.

[3] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. 2003. The Many Faces of Publish/Subscribe. ACM
Comput. Surv. 35, 2 (2003), 114–131.

[4] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov.
2015. Ultra Lightweight JavaScript Engine for Internet of Things. In
SPLASH Companion 2015. ACM, New York, NY, USA, 19–20.

[5] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-
Gallego, and Jesus Alonso-Zarate. 2015. A survey on application
layer protocols for the internet of things. Transaction on IoT and Cloud
Computing 3, 1 (2015), 11–17.

[6] Jin-woo Kwon and Soo-Mook Moon. 2017. Web Application Migration
with Closure Reconstruction. In Proceedings of the 26th International
Conference on World Wide Web (WWW ’17). Republic and Canton of
Geneva, Switzerland, 133–142.

[7] James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. 2013. Imagen:
Runtime Migration of Browser Sessions for Javascript Web Applica-
tions. In Proceedings of the 22Nd International Conference on World
Wide Web (WWW ’13). ACM, New York, NY, USA, 815–826.

https://software.intel.com/en-us/xdk

	Abstract
	1 Introduction
	2 SmartJS Ecosystem and Applications
	3 Monitoring and Self-Adaptation
	4 Conclusion
	References

