ThingsJS: Towards a Flexible and Self-Adaptable

Middleware for Dynamic and Heterogeneous loT
Environments
Middleware for loT — m4iot@Middleware 2017

Julien Gascon-Samson, Mohammad Rafiuzzaman,
Karthik Pattabiraman

University of British Columbia

Department of Electrical and Computer Engineering
Vancouver, Canada

December 11, 2017

Motivation
[Ielelololele}

Motivation

o World of loT growing at a
very fast pace!

\
AN

Motivation
[Ielelololele}

Motivation

N
2
BN

ez @ World of loT growing at a
| ‘ very fast pace!

| -0 | | e Traditionaly, processing was
’ / done in the cloud
AN
000000 4
Ve D
(<
\\\\ ‘.....' ‘.....' ‘.l...' \J>
N //’

—_ <~

Motivation

9000000

Motivation

o World of loT growing at a
very fast pace!

o Traditionaly, processing was
done in the cloud

@ Emerging trend: running
applications on the loT
devices themselves (edge)

o Performance, costs,
reliability

Motivation
0®00000

Goals and Motivation

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)

Motivation
[eeX Yololele}

Goals and Motivation

@ Programmers are typically
more productive in
higher-level languages

@ JavaScript: strong user base

performance
A c

@ ThingsJS: a framework for O
developing and deploying
high-level applications on loT
devices (edge computing)

Js

O

programmer
productivity

Motivation
[eeX Yololele}

Goals and Motivation

@ Programmers are typically
more productive in
higher-level languages

@ JavaScript: strong user base

performance
A c

@ ThingsJS: a framework for O
developing and deploying
high-level applications on loT
devices (edge computing)

programmer
productivity

Motivation
[eeX Yololele}

Goals and Motivation

@ Programmers are typically
more productive in
higher-level languages

@ JavaScript: strong user base

@ ThingsJS: a framework for

developing and deploying JavaScript VMs on loT

high-level applications on loT @ Samsung loT js
devices (edge computing) o Intel XDK

DukServer

°
@ Smart.js
°

Node.js on loT devices

Motivation

00®@0000

Goals and Motivation

® Programmers are typically

L more productive in
® ol world is highly higher-level languages
heterogeneous! g guag

o Different hardware

platforms
o OSes JavaScript VMs on loT

o Environments @ Samsung loT.js
@ ThingsJS: Declarative o Intel XDK

language for expressing -
constraints ukserver

°
o Over the devices @ Smart.js
o Over the applications @ Node.js on loT devices

@ JavaScript: strong user base

Motivation
[eIeTeY Tolele}

Goals and Motivation

Scheduling

o Given a set of loT
applications (“components”)

@ Given a set of constraints

@ ThingsJS: a framework for
developing and deploying 4
high-level applications on loT
devices (edge computing)
© Scheduling Applications
on loT Devices

Motivation
[eIeTeY Tolele}

Goals and Motivation

Scheduling

o Given a set of loT
applications (“components”)

@ Given a set of constraints

@ ThingsJS: a framework for

developing and deploying Y

high-level applications on loT

devices (edge computing) @ What is the optimal mapping
@ Scheduling Applications of components to devices?

on loT Devices .
@ Significant work on

scheduling applications in the
cloud — idea of scheduling
applications in the edge is
relatively novel

Motivation
0000®00

Goals and Motivation

Example: motion detection

@ ThingsJS: a framework for © video_camera: tied to
developing and deploying hardware
high-level applications on loT @ motion_detect: detects
devices (edge computing) motion
© Scheduling Applications
on loT Devices
/" video camera motion_detect h N

B -‘ Z
\
(g o >
o ssses] ssseclp
\\ Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C /J‘
~__

Motivation
0000®00

Goals and Motivation

Example: motion detection

@ video_camera: tied to

@ ThingsJS: a framework for

developing and deploying hardware
high-level applications on loT @ motion_detect: detects
devices (edge computing) motion

© Scheduling Applications

_ @ Some components
on loT Devices P

can/should be run in the
cloud

. —
— N ya video_camera

> ~
‘ : E web_dashbn;al;ah 7\'7 e _a— \/
E = N vy _,@r |
T I e
Briel P i f ¢
") stream_viewer | m m “

\\Clorud Server \\ Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi3-C |
ud Ser , X

S \\\»,,,,7/,!\ N P e

Motivation
00000e0

Goals and Motivation

@ ThingsJS: a framework for

developing and deploying @ Conditions change over time
high-level applications on loT o loT devices are
devices (edge computing) resource-constrained
@ Scheduling Applications on
loT Devices
@ Migrating loT
Applications
- _— - >~
— 7 S— /// video_camera

motion_detect

/ . \
: / E El Webidashboarc\i;‘ L e)
— — - N
) [— ¥ auw B9
“\\“ {’;ﬂ !streamiviewer ‘ < m \//

“Cloud Server y N Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi3-C

- — .

Motivation

[eJelelele] lo}

Goals and Motivation

® ThingsJS: a framework for @ Conditions change over time

developing and deploying

high-level applications on loT o loT devices are
devices (edge computing) resource-constrained
© Scheduling Applications on @ It might be necessary to
loT Devices migrate components
@ Migrating loT

Applications

- — T~
— < >~

/

— ¢ S / video_camera moumvﬂmoct\

/ — N\ / motion_detect
[El web_dashboard) (e 4)
‘BB~ o -

w 4, & polm
I R S :

) " |
\\Clqygrsgwer y N Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C)

- \\\,,,,7,/\\ < //’/

Motivation
00000e0

Goals and Motivation

® ThingsJS: a framework for @ Conditions change over time

developing and deploying

high-level applications on loT @ loT devices are
devices (edge computing) resource-constrained
O Scheduling Applications on @ It might be necessary to
loT Devices migrate components
© Migrating loT)))
Applications @ Prior work: migrating web

applications across browsers

4

_— T~
— < ——
—) — i)
(// video_camera motion_detect motion_d rtoct\
= 0.

‘/ El webidashboa;a:‘ (
([m=r l) < -y \/
\ N) (H _
N Il] | \v/n ’Stream7V|ewer) . m ‘

y N Raspberry Pi 3 - A Raspberry Pi 0 - B Raspberry Pi 3 - C /“

« T— - 7

)|

il

*Cloud Server

Motivation
[eIelelolote] }

Goals and Motivation

@ ThingsJS: a framework for Publish/Subcribe - MQTT

developing and deploying - .
high-level applications on loT @ Publish/subscribe maps well

devices (edge Computing) to IOT (MQTT iso Standard)
@ Scheduling Applications on
loT Devices
@ Migrating loT Applications
© Optimizing the
Communications)

Publish/Subscribe

Motivation
[eIelelolote] }

Goals and Motivation

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)

@ Scheduling Applications on
loT Devices

@ Migrating loT Applications

© Optimizing the
Communications

Publish/Subcribe - MQTT

@ Publish/subscribe maps well
to loT (MQTT: iso standard)

@ Significant work in
cloud/p2p pub/sub

Publish/Subscribe

Motivation

O00000e

Goals and Motivation

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)

@ Scheduling Applications on
loT Devices

@ Migrating loT Applications

© Optimizing the
Communications

Publish/Subcribe - MQTT

@ Publish/subscribe maps well
to loT (MQTT: iso standard)

@ Significant work in
cloud/p2p pub/sub

e Adapting pub/sub
architectures for loT

Publish/Subscribe

ThingsJS
®000

ThingsJS: loT Runtime Middleware

© ThingsJS: lIoT Runtime Middleware

ThingsJS
000

ThingsJS

Things)S Device Declaration

Things)S App Source Code Physical
i j i i (Node.js) Constraints
things3jsl things0js1 cloudl Description
SESEEEEO S SO EE S Component: Component:
Sensor.js Actuator.js Logical
i i
ca{rzgs;)e:lt szencslg:za;mn Constraints
{actuatorl,actuator2}, regulatorl Regulator.js Description

Things)S Manager

e

< A 4 —3
things3js1 things0js1 cloudl
€K <LK <LK
= LKL <>=<<<<<<< = LKL

Thingsl|S Runtime Things|S Runtime

Things|S Runtime
sensorl actuatorl regulatorl

A

ThingsJS
coeo

ThingsJS Application

Things)S Device Declaration Things)S App Source Code Physical

i j i j (Node.js) Constraints
things3jsl . things0js1 cloudl Deseription

0= o= llo= Component: Component:
Sensor.js Actuator.js "
Logical

Component Declaration N
{sensorl,sensor2} Constraints
{actuatorl,actuator2}, regulatorl Regulator.js Description

Source Code:

e High-Level Language (i.e., Javascript - Node.js)

@ Code written in terms of “components”

Constraints:
@ Physical: device-related

o Logical:
component-related

ThingsJS
coeo

ThingsJS Application

Things)S Device Declaration Things)S App Source Code Physigal
i j i i (Node.js) Constraints
things3jsl | things0Ojsl cloudl Description
e
[0 = [©= llo= Component: Component:
Sensor.js Actuator.js n
Component Declaration LOQIC§|
{sensorl,sensor2}, Constraints
{actuatorl,actuator2}, regulatorl Regulator.js Description

Source Code:
e High-Level Language (i.e., Javascript - Node.js)

@ Code written in terms of “components”

Constraints: e CPU (workload units)
o Physical: device-related o RAM
o Logical: @ Available incoming &

component-related outgoing bandwidth

ThingsJS
coeo

ThingsJS Application

Things)S Device Declaration Things)S App Source Code Physical
i j i j (Node.js) Constraints
things3jsl | things0js1 cloudl Description
. o= llo= Component: Component:
Sensor.js Actuator.js -
Logical

Component Declaration c
{sensorl,sensor2} Constraints
{actuatorl,actuator2}, regulatorl Regulator.js Description

Source Code:

e High-Level Language (i.e., Javascript - Node.js)

@ Code written in terms of “components”

o Workload units
Constraints: o RAM
@ Physical: device-related o Incoming & outgoing
o Logical: bandwidth
component-related @ Inter-component constraints:
latency, bandwidth

ThingsJS
ocooe

ThingsJS Middleware

'

/_N ThingsJS Manager
P o ey

A 4 —3
things0js1

things3jsl cloudl

O= C=

Q=
Thingsl|S Runtime

Things|S Runtime Thingsl|S Runtime
sensorl actuatorl regulatorl

000

Scheduling
®00

Dynamic Scheduling

© Dynamic Scheduling

Scheduling
oeo

Scheduling Applications on Things (1)

@ Predicting the workload of components

@ Machine-learning

node10 xxx

Feature 1 Feature? ... Featured | Execution Time

@ Training:

o Several devices, different
load profiles

e Monitoring performance

hode 11 X
node 12 xux

(execution time)
o Construction of a model
@ Predicting:
o Execution time on device
e With a specific load level

@ Scheduling the placement of components to devices

v

Scheduling
ooe

Scheduling Applications on Things (2)

@ Predicting the workload of components
@ Scheduling the placement of components to devices

~ Given a set of constraints
...and the prediction model

@ What is the optimal

J arrangement of
A components-to-devices?

AN

Respecting all constraints
SMT Solver
Most suitable global solution

~—

A

Rescheduling?

Code Migration
®00

ThingsMigrate: Migrating JavaScript loT Applications

@ JavaScript Code Migration

Code Migration
oeo

Constraints

@ Portability: heterogeneous
devices, cloud (cloud-edge

computing)
- ‘\ N o No modifications to VM

e Stateful applications

-
\\ ‘.....' ‘..... ‘.l...
\ @ Asynchroneous nature of JS

Challenges and Approach

O©oO~N OCIRhWNH

function Counter(val) {
var value = val;

return function () {
value = value + 1;
// Can access parent function local
variable

return value;

}
+

var f = Counter(5);
var g = Counter(2);

document. writeln(f()); // Prints 6
document. writeln(g()); // Prints 3

Code Migration
ooe

@ Closures
Q Timers

© Asynchronous
Model
(Event-Based)

Code Migration
ooe

Challenges and Approach

@ Closures
© Timers
1 function Counter(val) {
% var value = val; © Asynchronous
4 return function() { Model
5 value = value + 1;
6 // Can access parent function local (EVent—Based)
variable
7 return value;
8 } N/
9 s
10
11 var f = Counter(5);
12 var g = Counter(2); e COde
13 :
14 document.writeln(f()); // Prints 6 Instrumentation
15 document.writeln(g()); // Prints 3 e State Seria“zation

@ Code
Reconstruction

Communications
[IeTole}

Inter-Component Communications

© Inter-Component Communications

Communications
] Yole}

Topic-Based Publish/Subscribe

e Easy decoupling of content producers from content consumers
@ Abstraction of network-related considerations

1 //

2

3 // Connect

4 pubsub.connect (function() {

5

6 // Repeat every second

7 setInterval (function() {

8

9 // Read temperature from GPIO pin
10 var temperature = GPIO.readPin(12);
1

12 // Publish temperature

13 pubsub.publish("smartsensor/temperature”, {
14 id: mySensorId,
15 temperature: temperature

6 })
17

18 },)

19

200 h;

Communications
] Yole}

Topic-Based Publish/Subscribe

@ Easy decoupling of content producers from content consumers
@ Abstraction of network-related considerations
/7

// Connect
pubsub.connect (function () {

3
c

// Subscribe to temperature messages
pubsub.subscribe ("smartsensor/temperature", function(d) {
if (d.temperature > threshold) {
pubsub.publish("smartsensor/actuation", {
id: d.id,
powerVariation: =
b
} else if (d.temperature < threshold) {
pubsub.publish("smarts
16 id: d.id,
1 powerVariation:

or/actuation", {

18 I

,:‘ l }) ;

Communications
[e1eY To}

Pub/Sub Adaptability

How should the pub/sub service be provided?
In the cloud?
Peer-to-peer (mesh)?
Hybrid approaches?
e Dynamic reconfiguration

Other pub/sub paradigms: content-based, graph-based

Peer-to-peer Pub/Sub Pub/Sub with a broker

Publisher

Subscriber

Sub@

Subscriber

Publisher Subscriber

Communications
oooe

Conclusion

@ ThingsJS: loT Runtime Middleware

@ Publish/Subscribe: Inter-Component Communications
@ Dynamic Scheduling

o Code Migration

Research Team:
@ Professor Karthik Pattabiraman
@ Julien Gascon-Samson, PhD — NSERC Post-Doctoral Fellow
o Kumseok Jung — Master’s Student
@ Mohammad Rafiuzzaman — PhD Student
Resources:
@ ThingsJS: http://thingsjs.juliengs.com
e GitHub: https://github.com/karthikp-ubc/ThingsJS

http://blogs.ubc.ca/karthik/
http://www.juliengs.com
https://jungabyte.com/
http://ubc.academia.edu/RafiuzzamanMohammad
http://thingsjs.juliengs.com
https://github.com/karthikp-ubc/ThingsJS

	Goals and Motivation
	ThingsJS: IoT Runtime Middleware
	Dynamic Scheduling
	JavaScript Code Migration
	Inter-Component Communications

